Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device

We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive mann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-08, Vol.95 (31), p.11632-11640
Hauptverfasser: Szynkiewicz, Dagmara, Ulenberg, Szymon, Georgiev, Paweł, Hejna, Aleksander, Mikolaszek, Barbara, Bączek, Tomasz, Baron, Gino V., Denayer, Joeri F. M., Desmet, Gert, Belka, Mariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11640
container_issue 31
container_start_page 11632
container_title Analytical chemistry (Washington)
container_volume 95
creator Szynkiewicz, Dagmara
Ulenberg, Szymon
Georgiev, Paweł
Hejna, Aleksander
Mikolaszek, Barbara
Bączek, Tomasz
Baron, Gino V.
Denayer, Joeri F. M.
Desmet, Gert
Belka, Mariusz
description We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33–47%) and high precision (2–6%), especially for carbamazepine microextraction.
doi_str_mv 10.1021/acs.analchem.3c01263
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2842453652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847937414</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-77a6417dbc09b88a60bb1ba9863c09a1b2558767806225f5a4b0c0086afb9dbe3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhDRCyxIZFM1w7iZMsR1MGkFoxErCOrp0bjSsnGWxPSx-I98Tz1wULVpauv3OufQ5jbwXMBUjxEU2Y44jObGiY5waEVPkzNhOlhEzVtXzOZgCQZ7ICuGCvQrgDEAKEesku8qpoQBXljP25pnty03agMfKp58jz62zt7RhRO7ri68lPu3DFcez4Mm2yBp175AsT7T3xW4zkLTq-ss5Rxx9s3PDv1iWKr9FHaxyFg9bGwBfb7f4m2mnkceJxQ3yF2p9Hh-231viJfkeP5jBMz7OGXrMXPbpAb07nJfu5-vRj-SW7-fb563Jxk2FeqZhVFapCVJ020Oi6RgVaC41NrVI-DQoty7KuVFWDkrLsSyw0GIBaYa-bTlN-yT4cfbd--rWjENvBBkPO4UgphlbWhSzKXJUyoe__Qe-mnU99HKiqSRGLIlHFkUq_CsFT3269HdA_tgLafY1tqrE919ieakyydyfznR6oexKde0sAHIG9_Gnxfz3_AnQqrPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847937414</pqid></control><display><type>article</type><title>Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device</title><source>ACS Publications</source><creator>Szynkiewicz, Dagmara ; Ulenberg, Szymon ; Georgiev, Paweł ; Hejna, Aleksander ; Mikolaszek, Barbara ; Bączek, Tomasz ; Baron, Gino V. ; Denayer, Joeri F. M. ; Desmet, Gert ; Belka, Mariusz</creator><creatorcontrib>Szynkiewicz, Dagmara ; Ulenberg, Szymon ; Georgiev, Paweł ; Hejna, Aleksander ; Mikolaszek, Barbara ; Bączek, Tomasz ; Baron, Gino V. ; Denayer, Joeri F. M. ; Desmet, Gert ; Belka, Mariusz</creatorcontrib><description>We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33–47%) and high precision (2–6%), especially for carbamazepine microextraction.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c01263</identifier><identifier>PMID: 37490645</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>3-D printers ; ABS resins ; Acrylonitrile ; Analytical chemistry ; Carbamazepine ; Chemical activity ; Chemistry ; Composite materials ; Extrusion ; Fabrication ; Fused deposition modeling ; Imipramine ; Mass spectrometry ; Mass spectroscopy ; Polymer matrix composites ; Polymers ; Polypropylene ; Porous materials ; Printing ; Production methods ; Sample preparation ; Silica ; Silicon dioxide ; Solid phase methods ; Solid phases ; Sorbents ; Styrene ; Three dimensional printing</subject><ispartof>Analytical chemistry (Washington), 2023-08, Vol.95 (31), p.11632-11640</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 8, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-77a6417dbc09b88a60bb1ba9863c09a1b2558767806225f5a4b0c0086afb9dbe3</citedby><cites>FETCH-LOGICAL-a376t-77a6417dbc09b88a60bb1ba9863c09a1b2558767806225f5a4b0c0086afb9dbe3</cites><orcidid>0000-0003-1691-2306 ; 0000-0001-8781-7184 ; 0000-0001-5587-5136 ; 0000-0003-4413-1080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c01263$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c01263$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37490645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szynkiewicz, Dagmara</creatorcontrib><creatorcontrib>Ulenberg, Szymon</creatorcontrib><creatorcontrib>Georgiev, Paweł</creatorcontrib><creatorcontrib>Hejna, Aleksander</creatorcontrib><creatorcontrib>Mikolaszek, Barbara</creatorcontrib><creatorcontrib>Bączek, Tomasz</creatorcontrib><creatorcontrib>Baron, Gino V.</creatorcontrib><creatorcontrib>Denayer, Joeri F. M.</creatorcontrib><creatorcontrib>Desmet, Gert</creatorcontrib><creatorcontrib>Belka, Mariusz</creatorcontrib><title>Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33–47%) and high precision (2–6%), especially for carbamazepine microextraction.</description><subject>3-D printers</subject><subject>ABS resins</subject><subject>Acrylonitrile</subject><subject>Analytical chemistry</subject><subject>Carbamazepine</subject><subject>Chemical activity</subject><subject>Chemistry</subject><subject>Composite materials</subject><subject>Extrusion</subject><subject>Fabrication</subject><subject>Fused deposition modeling</subject><subject>Imipramine</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Porous materials</subject><subject>Printing</subject><subject>Production methods</subject><subject>Sample preparation</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solid phase methods</subject><subject>Solid phases</subject><subject>Sorbents</subject><subject>Styrene</subject><subject>Three dimensional printing</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhDRCyxIZFM1w7iZMsR1MGkFoxErCOrp0bjSsnGWxPSx-I98Tz1wULVpauv3OufQ5jbwXMBUjxEU2Y44jObGiY5waEVPkzNhOlhEzVtXzOZgCQZ7ICuGCvQrgDEAKEesku8qpoQBXljP25pnty03agMfKp58jz62zt7RhRO7ri68lPu3DFcez4Mm2yBp175AsT7T3xW4zkLTq-ss5Rxx9s3PDv1iWKr9FHaxyFg9bGwBfb7f4m2mnkceJxQ3yF2p9Hh-231viJfkeP5jBMz7OGXrMXPbpAb07nJfu5-vRj-SW7-fb563Jxk2FeqZhVFapCVJ020Oi6RgVaC41NrVI-DQoty7KuVFWDkrLsSyw0GIBaYa-bTlN-yT4cfbd--rWjENvBBkPO4UgphlbWhSzKXJUyoe__Qe-mnU99HKiqSRGLIlHFkUq_CsFT3269HdA_tgLafY1tqrE919ieakyydyfznR6oexKde0sAHIG9_Gnxfz3_AnQqrPs</recordid><startdate>20230808</startdate><enddate>20230808</enddate><creator>Szynkiewicz, Dagmara</creator><creator>Ulenberg, Szymon</creator><creator>Georgiev, Paweł</creator><creator>Hejna, Aleksander</creator><creator>Mikolaszek, Barbara</creator><creator>Bączek, Tomasz</creator><creator>Baron, Gino V.</creator><creator>Denayer, Joeri F. M.</creator><creator>Desmet, Gert</creator><creator>Belka, Mariusz</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1691-2306</orcidid><orcidid>https://orcid.org/0000-0001-8781-7184</orcidid><orcidid>https://orcid.org/0000-0001-5587-5136</orcidid><orcidid>https://orcid.org/0000-0003-4413-1080</orcidid></search><sort><creationdate>20230808</creationdate><title>Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device</title><author>Szynkiewicz, Dagmara ; Ulenberg, Szymon ; Georgiev, Paweł ; Hejna, Aleksander ; Mikolaszek, Barbara ; Bączek, Tomasz ; Baron, Gino V. ; Denayer, Joeri F. M. ; Desmet, Gert ; Belka, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-77a6417dbc09b88a60bb1ba9863c09a1b2558767806225f5a4b0c0086afb9dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>ABS resins</topic><topic>Acrylonitrile</topic><topic>Analytical chemistry</topic><topic>Carbamazepine</topic><topic>Chemical activity</topic><topic>Chemistry</topic><topic>Composite materials</topic><topic>Extrusion</topic><topic>Fabrication</topic><topic>Fused deposition modeling</topic><topic>Imipramine</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Porous materials</topic><topic>Printing</topic><topic>Production methods</topic><topic>Sample preparation</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solid phase methods</topic><topic>Solid phases</topic><topic>Sorbents</topic><topic>Styrene</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szynkiewicz, Dagmara</creatorcontrib><creatorcontrib>Ulenberg, Szymon</creatorcontrib><creatorcontrib>Georgiev, Paweł</creatorcontrib><creatorcontrib>Hejna, Aleksander</creatorcontrib><creatorcontrib>Mikolaszek, Barbara</creatorcontrib><creatorcontrib>Bączek, Tomasz</creatorcontrib><creatorcontrib>Baron, Gino V.</creatorcontrib><creatorcontrib>Denayer, Joeri F. M.</creatorcontrib><creatorcontrib>Desmet, Gert</creatorcontrib><creatorcontrib>Belka, Mariusz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szynkiewicz, Dagmara</au><au>Ulenberg, Szymon</au><au>Georgiev, Paweł</au><au>Hejna, Aleksander</au><au>Mikolaszek, Barbara</au><au>Bączek, Tomasz</au><au>Baron, Gino V.</au><au>Denayer, Joeri F. M.</au><au>Desmet, Gert</au><au>Belka, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-08-08</date><risdate>2023</risdate><volume>95</volume><issue>31</issue><spage>11632</spage><epage>11640</epage><pages>11632-11640</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33–47%) and high precision (2–6%), especially for carbamazepine microextraction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37490645</pmid><doi>10.1021/acs.analchem.3c01263</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1691-2306</orcidid><orcidid>https://orcid.org/0000-0001-8781-7184</orcidid><orcidid>https://orcid.org/0000-0001-5587-5136</orcidid><orcidid>https://orcid.org/0000-0003-4413-1080</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-08, Vol.95 (31), p.11632-11640
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2842453652
source ACS Publications
subjects 3-D printers
ABS resins
Acrylonitrile
Analytical chemistry
Carbamazepine
Chemical activity
Chemistry
Composite materials
Extrusion
Fabrication
Fused deposition modeling
Imipramine
Mass spectrometry
Mass spectroscopy
Polymer matrix composites
Polymers
Polypropylene
Porous materials
Printing
Production methods
Sample preparation
Silica
Silicon dioxide
Solid phase methods
Solid phases
Sorbents
Styrene
Three dimensional printing
title Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%203D-Printable,%20Porous,%20and%20Chemically%20Active%20Material%20Filled%20with%20Silica%20Particles%20and%20its%20Application%20to%20the%20Fabrication%20of%20a%20Microextraction%20Device&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Szynkiewicz,%20Dagmara&rft.date=2023-08-08&rft.volume=95&rft.issue=31&rft.spage=11632&rft.epage=11640&rft.pages=11632-11640&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c01263&rft_dat=%3Cproquest_cross%3E2847937414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847937414&rft_id=info:pmid/37490645&rfr_iscdi=true