Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device
We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive mann...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2023-08, Vol.95 (31), p.11632-11640 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11640 |
---|---|
container_issue | 31 |
container_start_page | 11632 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Szynkiewicz, Dagmara Ulenberg, Szymon Georgiev, Paweł Hejna, Aleksander Mikolaszek, Barbara Bączek, Tomasz Baron, Gino V. Denayer, Joeri F. M. Desmet, Gert Belka, Mariusz |
description | We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33–47%) and high precision (2–6%), especially for carbamazepine microextraction. |
doi_str_mv | 10.1021/acs.analchem.3c01263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2842453652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847937414</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-77a6417dbc09b88a60bb1ba9863c09a1b2558767806225f5a4b0c0086afb9dbe3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhDRCyxIZFM1w7iZMsR1MGkFoxErCOrp0bjSsnGWxPSx-I98Tz1wULVpauv3OufQ5jbwXMBUjxEU2Y44jObGiY5waEVPkzNhOlhEzVtXzOZgCQZ7ICuGCvQrgDEAKEesku8qpoQBXljP25pnty03agMfKp58jz62zt7RhRO7ri68lPu3DFcez4Mm2yBp175AsT7T3xW4zkLTq-ss5Rxx9s3PDv1iWKr9FHaxyFg9bGwBfb7f4m2mnkceJxQ3yF2p9Hh-231viJfkeP5jBMz7OGXrMXPbpAb07nJfu5-vRj-SW7-fb563Jxk2FeqZhVFapCVJ020Oi6RgVaC41NrVI-DQoty7KuVFWDkrLsSyw0GIBaYa-bTlN-yT4cfbd--rWjENvBBkPO4UgphlbWhSzKXJUyoe__Qe-mnU99HKiqSRGLIlHFkUq_CsFT3269HdA_tgLafY1tqrE919ieakyydyfznR6oexKde0sAHIG9_Gnxfz3_AnQqrPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847937414</pqid></control><display><type>article</type><title>Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device</title><source>ACS Publications</source><creator>Szynkiewicz, Dagmara ; Ulenberg, Szymon ; Georgiev, Paweł ; Hejna, Aleksander ; Mikolaszek, Barbara ; Bączek, Tomasz ; Baron, Gino V. ; Denayer, Joeri F. M. ; Desmet, Gert ; Belka, Mariusz</creator><creatorcontrib>Szynkiewicz, Dagmara ; Ulenberg, Szymon ; Georgiev, Paweł ; Hejna, Aleksander ; Mikolaszek, Barbara ; Bączek, Tomasz ; Baron, Gino V. ; Denayer, Joeri F. M. ; Desmet, Gert ; Belka, Mariusz</creatorcontrib><description>We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33–47%) and high precision (2–6%), especially for carbamazepine microextraction.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c01263</identifier><identifier>PMID: 37490645</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>3-D printers ; ABS resins ; Acrylonitrile ; Analytical chemistry ; Carbamazepine ; Chemical activity ; Chemistry ; Composite materials ; Extrusion ; Fabrication ; Fused deposition modeling ; Imipramine ; Mass spectrometry ; Mass spectroscopy ; Polymer matrix composites ; Polymers ; Polypropylene ; Porous materials ; Printing ; Production methods ; Sample preparation ; Silica ; Silicon dioxide ; Solid phase methods ; Solid phases ; Sorbents ; Styrene ; Three dimensional printing</subject><ispartof>Analytical chemistry (Washington), 2023-08, Vol.95 (31), p.11632-11640</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 8, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-77a6417dbc09b88a60bb1ba9863c09a1b2558767806225f5a4b0c0086afb9dbe3</citedby><cites>FETCH-LOGICAL-a376t-77a6417dbc09b88a60bb1ba9863c09a1b2558767806225f5a4b0c0086afb9dbe3</cites><orcidid>0000-0003-1691-2306 ; 0000-0001-8781-7184 ; 0000-0001-5587-5136 ; 0000-0003-4413-1080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c01263$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c01263$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37490645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szynkiewicz, Dagmara</creatorcontrib><creatorcontrib>Ulenberg, Szymon</creatorcontrib><creatorcontrib>Georgiev, Paweł</creatorcontrib><creatorcontrib>Hejna, Aleksander</creatorcontrib><creatorcontrib>Mikolaszek, Barbara</creatorcontrib><creatorcontrib>Bączek, Tomasz</creatorcontrib><creatorcontrib>Baron, Gino V.</creatorcontrib><creatorcontrib>Denayer, Joeri F. M.</creatorcontrib><creatorcontrib>Desmet, Gert</creatorcontrib><creatorcontrib>Belka, Mariusz</creatorcontrib><title>Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33–47%) and high precision (2–6%), especially for carbamazepine microextraction.</description><subject>3-D printers</subject><subject>ABS resins</subject><subject>Acrylonitrile</subject><subject>Analytical chemistry</subject><subject>Carbamazepine</subject><subject>Chemical activity</subject><subject>Chemistry</subject><subject>Composite materials</subject><subject>Extrusion</subject><subject>Fabrication</subject><subject>Fused deposition modeling</subject><subject>Imipramine</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Porous materials</subject><subject>Printing</subject><subject>Production methods</subject><subject>Sample preparation</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solid phase methods</subject><subject>Solid phases</subject><subject>Sorbents</subject><subject>Styrene</subject><subject>Three dimensional printing</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhDRCyxIZFM1w7iZMsR1MGkFoxErCOrp0bjSsnGWxPSx-I98Tz1wULVpauv3OufQ5jbwXMBUjxEU2Y44jObGiY5waEVPkzNhOlhEzVtXzOZgCQZ7ICuGCvQrgDEAKEesku8qpoQBXljP25pnty03agMfKp58jz62zt7RhRO7ri68lPu3DFcez4Mm2yBp175AsT7T3xW4zkLTq-ss5Rxx9s3PDv1iWKr9FHaxyFg9bGwBfb7f4m2mnkceJxQ3yF2p9Hh-231viJfkeP5jBMz7OGXrMXPbpAb07nJfu5-vRj-SW7-fb563Jxk2FeqZhVFapCVJ020Oi6RgVaC41NrVI-DQoty7KuVFWDkrLsSyw0GIBaYa-bTlN-yT4cfbd--rWjENvBBkPO4UgphlbWhSzKXJUyoe__Qe-mnU99HKiqSRGLIlHFkUq_CsFT3269HdA_tgLafY1tqrE919ieakyydyfznR6oexKde0sAHIG9_Gnxfz3_AnQqrPs</recordid><startdate>20230808</startdate><enddate>20230808</enddate><creator>Szynkiewicz, Dagmara</creator><creator>Ulenberg, Szymon</creator><creator>Georgiev, Paweł</creator><creator>Hejna, Aleksander</creator><creator>Mikolaszek, Barbara</creator><creator>Bączek, Tomasz</creator><creator>Baron, Gino V.</creator><creator>Denayer, Joeri F. M.</creator><creator>Desmet, Gert</creator><creator>Belka, Mariusz</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1691-2306</orcidid><orcidid>https://orcid.org/0000-0001-8781-7184</orcidid><orcidid>https://orcid.org/0000-0001-5587-5136</orcidid><orcidid>https://orcid.org/0000-0003-4413-1080</orcidid></search><sort><creationdate>20230808</creationdate><title>Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device</title><author>Szynkiewicz, Dagmara ; Ulenberg, Szymon ; Georgiev, Paweł ; Hejna, Aleksander ; Mikolaszek, Barbara ; Bączek, Tomasz ; Baron, Gino V. ; Denayer, Joeri F. M. ; Desmet, Gert ; Belka, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-77a6417dbc09b88a60bb1ba9863c09a1b2558767806225f5a4b0c0086afb9dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>ABS resins</topic><topic>Acrylonitrile</topic><topic>Analytical chemistry</topic><topic>Carbamazepine</topic><topic>Chemical activity</topic><topic>Chemistry</topic><topic>Composite materials</topic><topic>Extrusion</topic><topic>Fabrication</topic><topic>Fused deposition modeling</topic><topic>Imipramine</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Porous materials</topic><topic>Printing</topic><topic>Production methods</topic><topic>Sample preparation</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solid phase methods</topic><topic>Solid phases</topic><topic>Sorbents</topic><topic>Styrene</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szynkiewicz, Dagmara</creatorcontrib><creatorcontrib>Ulenberg, Szymon</creatorcontrib><creatorcontrib>Georgiev, Paweł</creatorcontrib><creatorcontrib>Hejna, Aleksander</creatorcontrib><creatorcontrib>Mikolaszek, Barbara</creatorcontrib><creatorcontrib>Bączek, Tomasz</creatorcontrib><creatorcontrib>Baron, Gino V.</creatorcontrib><creatorcontrib>Denayer, Joeri F. M.</creatorcontrib><creatorcontrib>Desmet, Gert</creatorcontrib><creatorcontrib>Belka, Mariusz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szynkiewicz, Dagmara</au><au>Ulenberg, Szymon</au><au>Georgiev, Paweł</au><au>Hejna, Aleksander</au><au>Mikolaszek, Barbara</au><au>Bączek, Tomasz</au><au>Baron, Gino V.</au><au>Denayer, Joeri F. M.</au><au>Desmet, Gert</au><au>Belka, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-08-08</date><risdate>2023</risdate><volume>95</volume><issue>31</issue><spage>11632</spage><epage>11640</epage><pages>11632-11640</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33–47%) and high precision (2–6%), especially for carbamazepine microextraction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37490645</pmid><doi>10.1021/acs.analchem.3c01263</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1691-2306</orcidid><orcidid>https://orcid.org/0000-0001-8781-7184</orcidid><orcidid>https://orcid.org/0000-0001-5587-5136</orcidid><orcidid>https://orcid.org/0000-0003-4413-1080</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-08, Vol.95 (31), p.11632-11640 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2842453652 |
source | ACS Publications |
subjects | 3-D printers ABS resins Acrylonitrile Analytical chemistry Carbamazepine Chemical activity Chemistry Composite materials Extrusion Fabrication Fused deposition modeling Imipramine Mass spectrometry Mass spectroscopy Polymer matrix composites Polymers Polypropylene Porous materials Printing Production methods Sample preparation Silica Silicon dioxide Solid phase methods Solid phases Sorbents Styrene Three dimensional printing |
title | Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%203D-Printable,%20Porous,%20and%20Chemically%20Active%20Material%20Filled%20with%20Silica%20Particles%20and%20its%20Application%20to%20the%20Fabrication%20of%20a%20Microextraction%20Device&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Szynkiewicz,%20Dagmara&rft.date=2023-08-08&rft.volume=95&rft.issue=31&rft.spage=11632&rft.epage=11640&rft.pages=11632-11640&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c01263&rft_dat=%3Cproquest_cross%3E2847937414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847937414&rft_id=info:pmid/37490645&rfr_iscdi=true |