Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets
Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigat...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2024-01, Vol.266 (Pt 1), p.124953-124953, Article 124953 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124953 |
---|---|
container_issue | Pt 1 |
container_start_page | 124953 |
container_title | Talanta (Oxford) |
container_volume | 266 |
creator | Carvalho, Luis B. Teigas-Campos, Pedro A.D. Jorge, Susana Protti, Michele Mercolini, Laura Dhir, Rajiv Wiśniewski, Jacek R. Lodeiro, Carlos Santos, Hugo M. Capelo, José L. |
description | Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible.
[Display omitted]
•Implications for advancing biomarker identification in renal carcinomas and analytical proteomics studies.•Comprehensive comparison of three normalization methods for proteomics datasets.•Rigorous analysis benchmarked against a validated method using immunohistochemistry.•Choice of normalization method loses criticality with more than two datasets.•Total protein approach demonstrated superior efficacy in biomarker discovery. |
doi_str_mv | 10.1016/j.talanta.2023.124953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2842453624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003991402300704X</els_id><sourcerecordid>2842453624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-482c41a596710238c5c56162fe2e2c55a5eefa07ece853e798d5430b4aaadd363</originalsourceid><addsrcrecordid>eNqFkEtvEzEQgC0EomnhJ4B85LLBz31wQVVVKFJFL-VsTeyJcLS7Dh4HKeXP19EGrlxsy_PN62PsnRRrKWT7cbcuMMJcYK2E0mupzGD1C7aSfacbbTv9kq2E0EMzSCMu2CXRTohKCv2aXejODKJXasX-fE95gjE-QYlp5hOWnykQj_UJRJz26EtO9Tsfmw0QBg4zjMcSPYx8n1PBNEVPn_g19zXMqRzCkS9krZex0tzjWA_IPs5pAh6g1HihN-zVFkbCt-f7iv34cvt4c9fcP3z9dnN933jditKYXnkjwQ5tJ-sCvbfetrJVW1SovLVgEbcgOvTYW43d0AdrtNgYAAhBt_qKfVjq1nl_HZCKmyKdZoIZ04Gc6o0yVrfKVNQuqM-JKOPW7XOcIB-dFO7k3e3c2bs7eXeL95r3_tzisJkw_Mv6K7oCnxcA66K_I2ZHPuLsMcRcFbuQ4n9aPAPpBJi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842453624</pqid></control><display><type>article</type><title>Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Carvalho, Luis B. ; Teigas-Campos, Pedro A.D. ; Jorge, Susana ; Protti, Michele ; Mercolini, Laura ; Dhir, Rajiv ; Wiśniewski, Jacek R. ; Lodeiro, Carlos ; Santos, Hugo M. ; Capelo, José L.</creator><creatorcontrib>Carvalho, Luis B. ; Teigas-Campos, Pedro A.D. ; Jorge, Susana ; Protti, Michele ; Mercolini, Laura ; Dhir, Rajiv ; Wiśniewski, Jacek R. ; Lodeiro, Carlos ; Santos, Hugo M. ; Capelo, José L.</creatorcontrib><description>Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible.
[Display omitted]
•Implications for advancing biomarker identification in renal carcinomas and analytical proteomics studies.•Comprehensive comparison of three normalization methods for proteomics datasets.•Rigorous analysis benchmarked against a validated method using immunohistochemistry.•Choice of normalization method loses criticality with more than two datasets.•Total protein approach demonstrated superior efficacy in biomarker discovery.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2023.124953</identifier><identifier>PMID: 37490822</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Mass spectrometry ; Normalization methods ; Proteomics ; Renal carcinoma</subject><ispartof>Talanta (Oxford), 2024-01, Vol.266 (Pt 1), p.124953-124953, Article 124953</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-482c41a596710238c5c56162fe2e2c55a5eefa07ece853e798d5430b4aaadd363</cites><orcidid>0000-0002-6032-8679 ; 0000-0001-5582-5446 ; 0000-0002-0644-9461 ; 0000-0002-3761-8512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.talanta.2023.124953$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37490822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Luis B.</creatorcontrib><creatorcontrib>Teigas-Campos, Pedro A.D.</creatorcontrib><creatorcontrib>Jorge, Susana</creatorcontrib><creatorcontrib>Protti, Michele</creatorcontrib><creatorcontrib>Mercolini, Laura</creatorcontrib><creatorcontrib>Dhir, Rajiv</creatorcontrib><creatorcontrib>Wiśniewski, Jacek R.</creatorcontrib><creatorcontrib>Lodeiro, Carlos</creatorcontrib><creatorcontrib>Santos, Hugo M.</creatorcontrib><creatorcontrib>Capelo, José L.</creatorcontrib><title>Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible.
[Display omitted]
•Implications for advancing biomarker identification in renal carcinomas and analytical proteomics studies.•Comprehensive comparison of three normalization methods for proteomics datasets.•Rigorous analysis benchmarked against a validated method using immunohistochemistry.•Choice of normalization method loses criticality with more than two datasets.•Total protein approach demonstrated superior efficacy in biomarker discovery.</description><subject>Mass spectrometry</subject><subject>Normalization methods</subject><subject>Proteomics</subject><subject>Renal carcinoma</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtvEzEQgC0EomnhJ4B85LLBz31wQVVVKFJFL-VsTeyJcLS7Dh4HKeXP19EGrlxsy_PN62PsnRRrKWT7cbcuMMJcYK2E0mupzGD1C7aSfacbbTv9kq2E0EMzSCMu2CXRTohKCv2aXejODKJXasX-fE95gjE-QYlp5hOWnykQj_UJRJz26EtO9Tsfmw0QBg4zjMcSPYx8n1PBNEVPn_g19zXMqRzCkS9krZex0tzjWA_IPs5pAh6g1HihN-zVFkbCt-f7iv34cvt4c9fcP3z9dnN933jditKYXnkjwQ5tJ-sCvbfetrJVW1SovLVgEbcgOvTYW43d0AdrtNgYAAhBt_qKfVjq1nl_HZCKmyKdZoIZ04Gc6o0yVrfKVNQuqM-JKOPW7XOcIB-dFO7k3e3c2bs7eXeL95r3_tzisJkw_Mv6K7oCnxcA66K_I2ZHPuLsMcRcFbuQ4n9aPAPpBJi8</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Carvalho, Luis B.</creator><creator>Teigas-Campos, Pedro A.D.</creator><creator>Jorge, Susana</creator><creator>Protti, Michele</creator><creator>Mercolini, Laura</creator><creator>Dhir, Rajiv</creator><creator>Wiśniewski, Jacek R.</creator><creator>Lodeiro, Carlos</creator><creator>Santos, Hugo M.</creator><creator>Capelo, José L.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6032-8679</orcidid><orcidid>https://orcid.org/0000-0001-5582-5446</orcidid><orcidid>https://orcid.org/0000-0002-0644-9461</orcidid><orcidid>https://orcid.org/0000-0002-3761-8512</orcidid></search><sort><creationdate>20240101</creationdate><title>Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets</title><author>Carvalho, Luis B. ; Teigas-Campos, Pedro A.D. ; Jorge, Susana ; Protti, Michele ; Mercolini, Laura ; Dhir, Rajiv ; Wiśniewski, Jacek R. ; Lodeiro, Carlos ; Santos, Hugo M. ; Capelo, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-482c41a596710238c5c56162fe2e2c55a5eefa07ece853e798d5430b4aaadd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mass spectrometry</topic><topic>Normalization methods</topic><topic>Proteomics</topic><topic>Renal carcinoma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Luis B.</creatorcontrib><creatorcontrib>Teigas-Campos, Pedro A.D.</creatorcontrib><creatorcontrib>Jorge, Susana</creatorcontrib><creatorcontrib>Protti, Michele</creatorcontrib><creatorcontrib>Mercolini, Laura</creatorcontrib><creatorcontrib>Dhir, Rajiv</creatorcontrib><creatorcontrib>Wiśniewski, Jacek R.</creatorcontrib><creatorcontrib>Lodeiro, Carlos</creatorcontrib><creatorcontrib>Santos, Hugo M.</creatorcontrib><creatorcontrib>Capelo, José L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Luis B.</au><au>Teigas-Campos, Pedro A.D.</au><au>Jorge, Susana</au><au>Protti, Michele</au><au>Mercolini, Laura</au><au>Dhir, Rajiv</au><au>Wiśniewski, Jacek R.</au><au>Lodeiro, Carlos</au><au>Santos, Hugo M.</au><au>Capelo, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>266</volume><issue>Pt 1</issue><spage>124953</spage><epage>124953</epage><pages>124953-124953</pages><artnum>124953</artnum><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible.
[Display omitted]
•Implications for advancing biomarker identification in renal carcinomas and analytical proteomics studies.•Comprehensive comparison of three normalization methods for proteomics datasets.•Rigorous analysis benchmarked against a validated method using immunohistochemistry.•Choice of normalization method loses criticality with more than two datasets.•Total protein approach demonstrated superior efficacy in biomarker discovery.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37490822</pmid><doi>10.1016/j.talanta.2023.124953</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6032-8679</orcidid><orcidid>https://orcid.org/0000-0001-5582-5446</orcidid><orcidid>https://orcid.org/0000-0002-0644-9461</orcidid><orcidid>https://orcid.org/0000-0002-3761-8512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-9140 |
ispartof | Talanta (Oxford), 2024-01, Vol.266 (Pt 1), p.124953-124953, Article 124953 |
issn | 0039-9140 1873-3573 |
language | eng |
recordid | cdi_proquest_miscellaneous_2842453624 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Mass spectrometry Normalization methods Proteomics Renal carcinoma |
title | Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalization%20methods%20in%20mass%20spectrometry-based%20analytical%20proteomics:%20A%20case%20study%20based%20on%20renal%20cell%20carcinoma%20datasets&rft.jtitle=Talanta%20(Oxford)&rft.au=Carvalho,%20Luis%20B.&rft.date=2024-01-01&rft.volume=266&rft.issue=Pt%201&rft.spage=124953&rft.epage=124953&rft.pages=124953-124953&rft.artnum=124953&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2023.124953&rft_dat=%3Cproquest_cross%3E2842453624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842453624&rft_id=info:pmid/37490822&rft_els_id=S003991402300704X&rfr_iscdi=true |