Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets

Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2024-01, Vol.266 (Pt 1), p.124953-124953, Article 124953
Hauptverfasser: Carvalho, Luis B., Teigas-Campos, Pedro A.D., Jorge, Susana, Protti, Michele, Mercolini, Laura, Dhir, Rajiv, Wiśniewski, Jacek R., Lodeiro, Carlos, Santos, Hugo M., Capelo, José L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124953
container_issue Pt 1
container_start_page 124953
container_title Talanta (Oxford)
container_volume 266
creator Carvalho, Luis B.
Teigas-Campos, Pedro A.D.
Jorge, Susana
Protti, Michele
Mercolini, Laura
Dhir, Rajiv
Wiśniewski, Jacek R.
Lodeiro, Carlos
Santos, Hugo M.
Capelo, José L.
description Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible. [Display omitted] •Implications for advancing biomarker identification in renal carcinomas and analytical proteomics studies.•Comprehensive comparison of three normalization methods for proteomics datasets.•Rigorous analysis benchmarked against a validated method using immunohistochemistry.•Choice of normalization method loses criticality with more than two datasets.•Total protein approach demonstrated superior efficacy in biomarker discovery.
doi_str_mv 10.1016/j.talanta.2023.124953
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2842453624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003991402300704X</els_id><sourcerecordid>2842453624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-482c41a596710238c5c56162fe2e2c55a5eefa07ece853e798d5430b4aaadd363</originalsourceid><addsrcrecordid>eNqFkEtvEzEQgC0EomnhJ4B85LLBz31wQVVVKFJFL-VsTeyJcLS7Dh4HKeXP19EGrlxsy_PN62PsnRRrKWT7cbcuMMJcYK2E0mupzGD1C7aSfacbbTv9kq2E0EMzSCMu2CXRTohKCv2aXejODKJXasX-fE95gjE-QYlp5hOWnykQj_UJRJz26EtO9Tsfmw0QBg4zjMcSPYx8n1PBNEVPn_g19zXMqRzCkS9krZex0tzjWA_IPs5pAh6g1HihN-zVFkbCt-f7iv34cvt4c9fcP3z9dnN933jditKYXnkjwQ5tJ-sCvbfetrJVW1SovLVgEbcgOvTYW43d0AdrtNgYAAhBt_qKfVjq1nl_HZCKmyKdZoIZ04Gc6o0yVrfKVNQuqM-JKOPW7XOcIB-dFO7k3e3c2bs7eXeL95r3_tzisJkw_Mv6K7oCnxcA66K_I2ZHPuLsMcRcFbuQ4n9aPAPpBJi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842453624</pqid></control><display><type>article</type><title>Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Carvalho, Luis B. ; Teigas-Campos, Pedro A.D. ; Jorge, Susana ; Protti, Michele ; Mercolini, Laura ; Dhir, Rajiv ; Wiśniewski, Jacek R. ; Lodeiro, Carlos ; Santos, Hugo M. ; Capelo, José L.</creator><creatorcontrib>Carvalho, Luis B. ; Teigas-Campos, Pedro A.D. ; Jorge, Susana ; Protti, Michele ; Mercolini, Laura ; Dhir, Rajiv ; Wiśniewski, Jacek R. ; Lodeiro, Carlos ; Santos, Hugo M. ; Capelo, José L.</creatorcontrib><description>Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible. [Display omitted] •Implications for advancing biomarker identification in renal carcinomas and analytical proteomics studies.•Comprehensive comparison of three normalization methods for proteomics datasets.•Rigorous analysis benchmarked against a validated method using immunohistochemistry.•Choice of normalization method loses criticality with more than two datasets.•Total protein approach demonstrated superior efficacy in biomarker discovery.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2023.124953</identifier><identifier>PMID: 37490822</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Mass spectrometry ; Normalization methods ; Proteomics ; Renal carcinoma</subject><ispartof>Talanta (Oxford), 2024-01, Vol.266 (Pt 1), p.124953-124953, Article 124953</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-482c41a596710238c5c56162fe2e2c55a5eefa07ece853e798d5430b4aaadd363</cites><orcidid>0000-0002-6032-8679 ; 0000-0001-5582-5446 ; 0000-0002-0644-9461 ; 0000-0002-3761-8512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.talanta.2023.124953$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37490822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Luis B.</creatorcontrib><creatorcontrib>Teigas-Campos, Pedro A.D.</creatorcontrib><creatorcontrib>Jorge, Susana</creatorcontrib><creatorcontrib>Protti, Michele</creatorcontrib><creatorcontrib>Mercolini, Laura</creatorcontrib><creatorcontrib>Dhir, Rajiv</creatorcontrib><creatorcontrib>Wiśniewski, Jacek R.</creatorcontrib><creatorcontrib>Lodeiro, Carlos</creatorcontrib><creatorcontrib>Santos, Hugo M.</creatorcontrib><creatorcontrib>Capelo, José L.</creatorcontrib><title>Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible. [Display omitted] •Implications for advancing biomarker identification in renal carcinomas and analytical proteomics studies.•Comprehensive comparison of three normalization methods for proteomics datasets.•Rigorous analysis benchmarked against a validated method using immunohistochemistry.•Choice of normalization method loses criticality with more than two datasets.•Total protein approach demonstrated superior efficacy in biomarker discovery.</description><subject>Mass spectrometry</subject><subject>Normalization methods</subject><subject>Proteomics</subject><subject>Renal carcinoma</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtvEzEQgC0EomnhJ4B85LLBz31wQVVVKFJFL-VsTeyJcLS7Dh4HKeXP19EGrlxsy_PN62PsnRRrKWT7cbcuMMJcYK2E0mupzGD1C7aSfacbbTv9kq2E0EMzSCMu2CXRTohKCv2aXejODKJXasX-fE95gjE-QYlp5hOWnykQj_UJRJz26EtO9Tsfmw0QBg4zjMcSPYx8n1PBNEVPn_g19zXMqRzCkS9krZex0tzjWA_IPs5pAh6g1HihN-zVFkbCt-f7iv34cvt4c9fcP3z9dnN933jditKYXnkjwQ5tJ-sCvbfetrJVW1SovLVgEbcgOvTYW43d0AdrtNgYAAhBt_qKfVjq1nl_HZCKmyKdZoIZ04Gc6o0yVrfKVNQuqM-JKOPW7XOcIB-dFO7k3e3c2bs7eXeL95r3_tzisJkw_Mv6K7oCnxcA66K_I2ZHPuLsMcRcFbuQ4n9aPAPpBJi8</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Carvalho, Luis B.</creator><creator>Teigas-Campos, Pedro A.D.</creator><creator>Jorge, Susana</creator><creator>Protti, Michele</creator><creator>Mercolini, Laura</creator><creator>Dhir, Rajiv</creator><creator>Wiśniewski, Jacek R.</creator><creator>Lodeiro, Carlos</creator><creator>Santos, Hugo M.</creator><creator>Capelo, José L.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6032-8679</orcidid><orcidid>https://orcid.org/0000-0001-5582-5446</orcidid><orcidid>https://orcid.org/0000-0002-0644-9461</orcidid><orcidid>https://orcid.org/0000-0002-3761-8512</orcidid></search><sort><creationdate>20240101</creationdate><title>Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets</title><author>Carvalho, Luis B. ; Teigas-Campos, Pedro A.D. ; Jorge, Susana ; Protti, Michele ; Mercolini, Laura ; Dhir, Rajiv ; Wiśniewski, Jacek R. ; Lodeiro, Carlos ; Santos, Hugo M. ; Capelo, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-482c41a596710238c5c56162fe2e2c55a5eefa07ece853e798d5430b4aaadd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mass spectrometry</topic><topic>Normalization methods</topic><topic>Proteomics</topic><topic>Renal carcinoma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Luis B.</creatorcontrib><creatorcontrib>Teigas-Campos, Pedro A.D.</creatorcontrib><creatorcontrib>Jorge, Susana</creatorcontrib><creatorcontrib>Protti, Michele</creatorcontrib><creatorcontrib>Mercolini, Laura</creatorcontrib><creatorcontrib>Dhir, Rajiv</creatorcontrib><creatorcontrib>Wiśniewski, Jacek R.</creatorcontrib><creatorcontrib>Lodeiro, Carlos</creatorcontrib><creatorcontrib>Santos, Hugo M.</creatorcontrib><creatorcontrib>Capelo, José L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Luis B.</au><au>Teigas-Campos, Pedro A.D.</au><au>Jorge, Susana</au><au>Protti, Michele</au><au>Mercolini, Laura</au><au>Dhir, Rajiv</au><au>Wiśniewski, Jacek R.</au><au>Lodeiro, Carlos</au><au>Santos, Hugo M.</au><au>Capelo, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>266</volume><issue>Pt 1</issue><spage>124953</spage><epage>124953</epage><pages>124953-124953</pages><artnum>124953</artnum><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible. [Display omitted] •Implications for advancing biomarker identification in renal carcinomas and analytical proteomics studies.•Comprehensive comparison of three normalization methods for proteomics datasets.•Rigorous analysis benchmarked against a validated method using immunohistochemistry.•Choice of normalization method loses criticality with more than two datasets.•Total protein approach demonstrated superior efficacy in biomarker discovery.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37490822</pmid><doi>10.1016/j.talanta.2023.124953</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6032-8679</orcidid><orcidid>https://orcid.org/0000-0001-5582-5446</orcidid><orcidid>https://orcid.org/0000-0002-0644-9461</orcidid><orcidid>https://orcid.org/0000-0002-3761-8512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2024-01, Vol.266 (Pt 1), p.124953-124953, Article 124953
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_2842453624
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Mass spectrometry
Normalization methods
Proteomics
Renal carcinoma
title Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalization%20methods%20in%20mass%20spectrometry-based%20analytical%20proteomics:%20A%20case%20study%20based%20on%20renal%20cell%20carcinoma%20datasets&rft.jtitle=Talanta%20(Oxford)&rft.au=Carvalho,%20Luis%20B.&rft.date=2024-01-01&rft.volume=266&rft.issue=Pt%201&rft.spage=124953&rft.epage=124953&rft.pages=124953-124953&rft.artnum=124953&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2023.124953&rft_dat=%3Cproquest_cross%3E2842453624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842453624&rft_id=info:pmid/37490822&rft_els_id=S003991402300704X&rfr_iscdi=true