Thermal Stress and Fatigue Analysis of Exhaust Manifold

In this study, we investigated the reliability assessment of exhaust manifold used in thermomechanical condition. Overlay model proposed by Besseling[1] was modified to consider the strain range dependence on elastic limit. By combining geometrical relation in hysteresis loop and temperature depende...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2004-01, Vol.261-263, p.1203-1208
Hauptverfasser: Lee, Keum Oh, Lee, Soon Bok, Park, K.H., Yoon, Sam Son
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue
container_start_page 1203
container_title Key engineering materials
container_volume 261-263
creator Lee, Keum Oh
Lee, Soon Bok
Park, K.H.
Yoon, Sam Son
description In this study, we investigated the reliability assessment of exhaust manifold used in thermomechanical condition. Overlay model proposed by Besseling[1] was modified to consider the strain range dependence on elastic limit. By combining geometrical relation in hysteresis loop and temperature dependence of elastic limit with isothermal overlay model, temperature dependent cyclic plasticity model was proposed. Continuous damage model based on isothermal fatigue data was generalized for non-isothermal condition. Finite element analysis and life prediction of exhaust manifold were performed under severe operating conditions.
doi_str_mv 10.4028/www.scientific.net/KEM.261-263.1203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28424013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28424013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c76251da56ee9f036a506ea72efa5d8832c5f837b265d1628ad6e19421f5b8b43</originalsourceid><addsrcrecordid>eNqV0D1PwzAQBmALgUQp_IdMLCipP2LHGauqBQQVA2W2XMemrtKk-ByV_ntcFYmZ4XQ3vHqlexB6ILgoMZWTw-FQgPG2i955U3Q2Tl7my4IKklPBCkIxu0AjIgTN66rml-nGhOW1pOIa3QBsMWZEEj5C1Wpjw0632XsMFiDTXZMtdPSfg82mnW6P4CHrXTb_3ugBYrbUnXd929yiK6dbsHe_e4w-FvPV7Cl_fXt8nk1fc8MqGnNTCcpJo7mwtnaYCc2xsLqi1mneSMmo4U6yak0Fb4igUjfCkrqkxPG1XJdsjO7PvfvQfw0Wotp5MLZtdWf7ARSVJS3Tbyk4OwdN6AGCdWof_E6HoyJYndBUQlN_aCqhqYSmEloapk5oqWV-bolBdxCt2ahtP4QEAf_q-QEqbX86</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28424013</pqid></control><display><type>article</type><title>Thermal Stress and Fatigue Analysis of Exhaust Manifold</title><source>Scientific.net Journals</source><creator>Lee, Keum Oh ; Lee, Soon Bok ; Park, K.H. ; Yoon, Sam Son</creator><creatorcontrib>Lee, Keum Oh ; Lee, Soon Bok ; Park, K.H. ; Yoon, Sam Son</creatorcontrib><description>In this study, we investigated the reliability assessment of exhaust manifold used in thermomechanical condition. Overlay model proposed by Besseling[1] was modified to consider the strain range dependence on elastic limit. By combining geometrical relation in hysteresis loop and temperature dependence of elastic limit with isothermal overlay model, temperature dependent cyclic plasticity model was proposed. Continuous damage model based on isothermal fatigue data was generalized for non-isothermal condition. Finite element analysis and life prediction of exhaust manifold were performed under severe operating conditions.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.261-263.1203</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Key engineering materials, 2004-01, Vol.261-263, p.1203-1208</ispartof><rights>2004 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c76251da56ee9f036a506ea72efa5d8832c5f837b265d1628ad6e19421f5b8b43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/488?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Keum Oh</creatorcontrib><creatorcontrib>Lee, Soon Bok</creatorcontrib><creatorcontrib>Park, K.H.</creatorcontrib><creatorcontrib>Yoon, Sam Son</creatorcontrib><title>Thermal Stress and Fatigue Analysis of Exhaust Manifold</title><title>Key engineering materials</title><description>In this study, we investigated the reliability assessment of exhaust manifold used in thermomechanical condition. Overlay model proposed by Besseling[1] was modified to consider the strain range dependence on elastic limit. By combining geometrical relation in hysteresis loop and temperature dependence of elastic limit with isothermal overlay model, temperature dependent cyclic plasticity model was proposed. Continuous damage model based on isothermal fatigue data was generalized for non-isothermal condition. Finite element analysis and life prediction of exhaust manifold were performed under severe operating conditions.</description><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqV0D1PwzAQBmALgUQp_IdMLCipP2LHGauqBQQVA2W2XMemrtKk-ByV_ntcFYmZ4XQ3vHqlexB6ILgoMZWTw-FQgPG2i955U3Q2Tl7my4IKklPBCkIxu0AjIgTN66rml-nGhOW1pOIa3QBsMWZEEj5C1Wpjw0632XsMFiDTXZMtdPSfg82mnW6P4CHrXTb_3ugBYrbUnXd929yiK6dbsHe_e4w-FvPV7Cl_fXt8nk1fc8MqGnNTCcpJo7mwtnaYCc2xsLqi1mneSMmo4U6yak0Fb4igUjfCkrqkxPG1XJdsjO7PvfvQfw0Wotp5MLZtdWf7ARSVJS3Tbyk4OwdN6AGCdWof_E6HoyJYndBUQlN_aCqhqYSmEloapk5oqWV-bolBdxCt2ahtP4QEAf_q-QEqbX86</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Lee, Keum Oh</creator><creator>Lee, Soon Bok</creator><creator>Park, K.H.</creator><creator>Yoon, Sam Son</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20040101</creationdate><title>Thermal Stress and Fatigue Analysis of Exhaust Manifold</title><author>Lee, Keum Oh ; Lee, Soon Bok ; Park, K.H. ; Yoon, Sam Son</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c76251da56ee9f036a506ea72efa5d8832c5f837b265d1628ad6e19421f5b8b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Keum Oh</creatorcontrib><creatorcontrib>Lee, Soon Bok</creatorcontrib><creatorcontrib>Park, K.H.</creatorcontrib><creatorcontrib>Yoon, Sam Son</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Keum Oh</au><au>Lee, Soon Bok</au><au>Park, K.H.</au><au>Yoon, Sam Son</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Stress and Fatigue Analysis of Exhaust Manifold</atitle><jtitle>Key engineering materials</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>261-263</volume><spage>1203</spage><epage>1208</epage><pages>1203-1208</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>In this study, we investigated the reliability assessment of exhaust manifold used in thermomechanical condition. Overlay model proposed by Besseling[1] was modified to consider the strain range dependence on elastic limit. By combining geometrical relation in hysteresis loop and temperature dependence of elastic limit with isothermal overlay model, temperature dependent cyclic plasticity model was proposed. Continuous damage model based on isothermal fatigue data was generalized for non-isothermal condition. Finite element analysis and life prediction of exhaust manifold were performed under severe operating conditions.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.261-263.1203</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2004-01, Vol.261-263, p.1203-1208
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_28424013
source Scientific.net Journals
title Thermal Stress and Fatigue Analysis of Exhaust Manifold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Stress%20and%20Fatigue%20Analysis%20of%20Exhaust%20Manifold&rft.jtitle=Key%20engineering%20materials&rft.au=Lee,%20Keum%20Oh&rft.date=2004-01-01&rft.volume=261-263&rft.spage=1203&rft.epage=1208&rft.pages=1203-1208&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.261-263.1203&rft_dat=%3Cproquest_cross%3E28424013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28424013&rft_id=info:pmid/&rfr_iscdi=true