An empirical study on the synergy of multiple crossover operators

Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2002-04, Vol.6 (2), p.212-223
Hauptverfasser: YOON, Hyun-Sook, MOON, Byung-Ro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 2
container_start_page 212
container_title IEEE transactions on evolutionary computation
container_volume 6
creator YOON, Hyun-Sook
MOON, Byung-Ro
description Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover operators. We choose a number of different crossover operators in an EA and investigate whether or not their combinations outperform the sole usage of the best crossover operator. The traveling salesman problem and the graph bisection problem were chosen for experimentation. Strong synergy effects were observed in both problems.
doi_str_mv 10.1109/4235.996022
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28417294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>996022</ieee_id><sourcerecordid>2430983221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-68c79d2587a18bf039f0bde132e7936e9331366c9e4dd08e77d6099c56fb811d3</originalsourceid><addsrcrecordid>eNqF0UtLxDAUBeAiCuroyp2rIqgL6XjzaJK7HAZfMOBGwV3ptLfaoS-TVph_b8YOCi50lYR8uZBzguCEwZQxwGvJRTxFVMD5TnDAULIIgKtdvweDkdbmZT84dG4FwGTM8CCYzZqQ6q60ZZZWoeuHfB22Tdi_UejWDdlXfyzCeqj6sqsozGzrXPtBNmw7smnfWncU7BVp5eh4u06C59ubp_l9tHi8e5jPFlEmgfWRMpnGnMdGp8wsCxBYwDInJjhpFIpQCCaUypBknoMhrXMFiFmsiqVhLBeT4HKc29n2fSDXJ3XpMqqqtKF2cAmCRiW0jr28-FNyI5nmKP-HOjaCc_Tw7BdctYNt_HcTY6Q0Pk3w6GpEXyFZKpLOlnVq1wmDZFNPsqknGevx-nw7MnU--sKmTVa6nydCQWxAeXc6upKIvq-3Qz4Bj7WVXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884480140</pqid></control><display><type>article</type><title>An empirical study on the synergy of multiple crossover operators</title><source>IEEE Electronic Library (IEL)</source><creator>YOON, Hyun-Sook ; MOON, Byung-Ro</creator><creatorcontrib>YOON, Hyun-Sook ; MOON, Byung-Ro</creatorcontrib><description>Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover operators. We choose a number of different crossover operators in an EA and investigate whether or not their combinations outperform the sole usage of the best crossover operator. The traveling salesman problem and the graph bisection problem were chosen for experimentation. Strong synergy effects were observed in both problems.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/4235.996022</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science ; Computer science; control theory; systems ; Connectionism. Neural networks ; Crossovers ; Empirical analysis ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Experimentation ; Flows in networks. Combinatorial problems ; Genetic algorithms ; Genetic mutations ; Local optimization ; Moon ; Mutations ; Operational research and scientific management ; Operational research. Management science ; Operators ; Probability ; Sole ; Steady-state ; Testing ; Traveling salesman problems ; Very large scale integration</subject><ispartof>IEEE transactions on evolutionary computation, 2002-04, Vol.6 (2), p.212-223</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-68c79d2587a18bf039f0bde132e7936e9331366c9e4dd08e77d6099c56fb811d3</citedby><cites>FETCH-LOGICAL-c401t-68c79d2587a18bf039f0bde132e7936e9331366c9e4dd08e77d6099c56fb811d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/996022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/996022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13605806$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YOON, Hyun-Sook</creatorcontrib><creatorcontrib>MOON, Byung-Ro</creatorcontrib><title>An empirical study on the synergy of multiple crossover operators</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover operators. We choose a number of different crossover operators in an EA and investigate whether or not their combinations outperform the sole usage of the best crossover operator. The traveling salesman problem and the graph bisection problem were chosen for experimentation. Strong synergy effects were observed in both problems.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Crossovers</subject><subject>Empirical analysis</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Experimentation</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Local optimization</subject><subject>Moon</subject><subject>Mutations</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operators</subject><subject>Probability</subject><subject>Sole</subject><subject>Steady-state</subject><subject>Testing</subject><subject>Traveling salesman problems</subject><subject>Very large scale integration</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLxDAUBeAiCuroyp2rIqgL6XjzaJK7HAZfMOBGwV3ptLfaoS-TVph_b8YOCi50lYR8uZBzguCEwZQxwGvJRTxFVMD5TnDAULIIgKtdvweDkdbmZT84dG4FwGTM8CCYzZqQ6q60ZZZWoeuHfB22Tdi_UejWDdlXfyzCeqj6sqsozGzrXPtBNmw7smnfWncU7BVp5eh4u06C59ubp_l9tHi8e5jPFlEmgfWRMpnGnMdGp8wsCxBYwDInJjhpFIpQCCaUypBknoMhrXMFiFmsiqVhLBeT4HKc29n2fSDXJ3XpMqqqtKF2cAmCRiW0jr28-FNyI5nmKP-HOjaCc_Tw7BdctYNt_HcTY6Q0Pk3w6GpEXyFZKpLOlnVq1wmDZFNPsqknGevx-nw7MnU--sKmTVa6nydCQWxAeXc6upKIvq-3Qz4Bj7WVXw</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>YOON, Hyun-Sook</creator><creator>MOON, Byung-Ro</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020401</creationdate><title>An empirical study on the synergy of multiple crossover operators</title><author>YOON, Hyun-Sook ; MOON, Byung-Ro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-68c79d2587a18bf039f0bde132e7936e9331366c9e4dd08e77d6099c56fb811d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Crossovers</topic><topic>Empirical analysis</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Experimentation</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Local optimization</topic><topic>Moon</topic><topic>Mutations</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operators</topic><topic>Probability</topic><topic>Sole</topic><topic>Steady-state</topic><topic>Testing</topic><topic>Traveling salesman problems</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YOON, Hyun-Sook</creatorcontrib><creatorcontrib>MOON, Byung-Ro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YOON, Hyun-Sook</au><au>MOON, Byung-Ro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical study on the synergy of multiple crossover operators</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2002-04-01</date><risdate>2002</risdate><volume>6</volume><issue>2</issue><spage>212</spage><epage>223</epage><pages>212-223</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover operators. We choose a number of different crossover operators in an EA and investigate whether or not their combinations outperform the sole usage of the best crossover operator. The traveling salesman problem and the graph bisection problem were chosen for experimentation. Strong synergy effects were observed in both problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/4235.996022</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2002-04, Vol.6 (2), p.212-223
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_28417294
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computer science
Computer science
control theory
systems
Connectionism. Neural networks
Crossovers
Empirical analysis
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Experimentation
Flows in networks. Combinatorial problems
Genetic algorithms
Genetic mutations
Local optimization
Moon
Mutations
Operational research and scientific management
Operational research. Management science
Operators
Probability
Sole
Steady-state
Testing
Traveling salesman problems
Very large scale integration
title An empirical study on the synergy of multiple crossover operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20study%20on%20the%20synergy%20of%20multiple%20crossover%20operators&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=YOON,%20Hyun-Sook&rft.date=2002-04-01&rft.volume=6&rft.issue=2&rft.spage=212&rft.epage=223&rft.pages=212-223&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/4235.996022&rft_dat=%3Cproquest_RIE%3E2430983221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884480140&rft_id=info:pmid/&rft_ieee_id=996022&rfr_iscdi=true