An empirical study on the synergy of multiple crossover operators
Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2002-04, Vol.6 (2), p.212-223 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 2 |
container_start_page | 212 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 6 |
creator | YOON, Hyun-Sook MOON, Byung-Ro |
description | Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover operators. We choose a number of different crossover operators in an EA and investigate whether or not their combinations outperform the sole usage of the best crossover operator. The traveling salesman problem and the graph bisection problem were chosen for experimentation. Strong synergy effects were observed in both problems. |
doi_str_mv | 10.1109/4235.996022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28417294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>996022</ieee_id><sourcerecordid>2430983221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-68c79d2587a18bf039f0bde132e7936e9331366c9e4dd08e77d6099c56fb811d3</originalsourceid><addsrcrecordid>eNqF0UtLxDAUBeAiCuroyp2rIqgL6XjzaJK7HAZfMOBGwV3ptLfaoS-TVph_b8YOCi50lYR8uZBzguCEwZQxwGvJRTxFVMD5TnDAULIIgKtdvweDkdbmZT84dG4FwGTM8CCYzZqQ6q60ZZZWoeuHfB22Tdi_UejWDdlXfyzCeqj6sqsozGzrXPtBNmw7smnfWncU7BVp5eh4u06C59ubp_l9tHi8e5jPFlEmgfWRMpnGnMdGp8wsCxBYwDInJjhpFIpQCCaUypBknoMhrXMFiFmsiqVhLBeT4HKc29n2fSDXJ3XpMqqqtKF2cAmCRiW0jr28-FNyI5nmKP-HOjaCc_Tw7BdctYNt_HcTY6Q0Pk3w6GpEXyFZKpLOlnVq1wmDZFNPsqknGevx-nw7MnU--sKmTVa6nydCQWxAeXc6upKIvq-3Qz4Bj7WVXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884480140</pqid></control><display><type>article</type><title>An empirical study on the synergy of multiple crossover operators</title><source>IEEE Electronic Library (IEL)</source><creator>YOON, Hyun-Sook ; MOON, Byung-Ro</creator><creatorcontrib>YOON, Hyun-Sook ; MOON, Byung-Ro</creatorcontrib><description>Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover operators. We choose a number of different crossover operators in an EA and investigate whether or not their combinations outperform the sole usage of the best crossover operator. The traveling salesman problem and the graph bisection problem were chosen for experimentation. Strong synergy effects were observed in both problems.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/4235.996022</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science ; Computer science; control theory; systems ; Connectionism. Neural networks ; Crossovers ; Empirical analysis ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Experimentation ; Flows in networks. Combinatorial problems ; Genetic algorithms ; Genetic mutations ; Local optimization ; Moon ; Mutations ; Operational research and scientific management ; Operational research. Management science ; Operators ; Probability ; Sole ; Steady-state ; Testing ; Traveling salesman problems ; Very large scale integration</subject><ispartof>IEEE transactions on evolutionary computation, 2002-04, Vol.6 (2), p.212-223</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-68c79d2587a18bf039f0bde132e7936e9331366c9e4dd08e77d6099c56fb811d3</citedby><cites>FETCH-LOGICAL-c401t-68c79d2587a18bf039f0bde132e7936e9331366c9e4dd08e77d6099c56fb811d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/996022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/996022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13605806$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YOON, Hyun-Sook</creatorcontrib><creatorcontrib>MOON, Byung-Ro</creatorcontrib><title>An empirical study on the synergy of multiple crossover operators</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover operators. We choose a number of different crossover operators in an EA and investigate whether or not their combinations outperform the sole usage of the best crossover operator. The traveling salesman problem and the graph bisection problem were chosen for experimentation. Strong synergy effects were observed in both problems.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Crossovers</subject><subject>Empirical analysis</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Experimentation</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Local optimization</subject><subject>Moon</subject><subject>Mutations</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operators</subject><subject>Probability</subject><subject>Sole</subject><subject>Steady-state</subject><subject>Testing</subject><subject>Traveling salesman problems</subject><subject>Very large scale integration</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLxDAUBeAiCuroyp2rIqgL6XjzaJK7HAZfMOBGwV3ptLfaoS-TVph_b8YOCi50lYR8uZBzguCEwZQxwGvJRTxFVMD5TnDAULIIgKtdvweDkdbmZT84dG4FwGTM8CCYzZqQ6q60ZZZWoeuHfB22Tdi_UejWDdlXfyzCeqj6sqsozGzrXPtBNmw7smnfWncU7BVp5eh4u06C59ubp_l9tHi8e5jPFlEmgfWRMpnGnMdGp8wsCxBYwDInJjhpFIpQCCaUypBknoMhrXMFiFmsiqVhLBeT4HKc29n2fSDXJ3XpMqqqtKF2cAmCRiW0jr28-FNyI5nmKP-HOjaCc_Tw7BdctYNt_HcTY6Q0Pk3w6GpEXyFZKpLOlnVq1wmDZFNPsqknGevx-nw7MnU--sKmTVa6nydCQWxAeXc6upKIvq-3Qz4Bj7WVXw</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>YOON, Hyun-Sook</creator><creator>MOON, Byung-Ro</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020401</creationdate><title>An empirical study on the synergy of multiple crossover operators</title><author>YOON, Hyun-Sook ; MOON, Byung-Ro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-68c79d2587a18bf039f0bde132e7936e9331366c9e4dd08e77d6099c56fb811d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Crossovers</topic><topic>Empirical analysis</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Experimentation</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Local optimization</topic><topic>Moon</topic><topic>Mutations</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operators</topic><topic>Probability</topic><topic>Sole</topic><topic>Steady-state</topic><topic>Testing</topic><topic>Traveling salesman problems</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YOON, Hyun-Sook</creatorcontrib><creatorcontrib>MOON, Byung-Ro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YOON, Hyun-Sook</au><au>MOON, Byung-Ro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical study on the synergy of multiple crossover operators</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2002-04-01</date><risdate>2002</risdate><volume>6</volume><issue>2</issue><spage>212</spage><epage>223</epage><pages>212-223</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Typical evolutionary algorithms (EAs) exploit the different space-search properties of variation operators, such as crossover, mutation and local optimization. There are also various operators in each element. This paper provides an extensive empirical study on the synergy among multiple crossover operators. We choose a number of different crossover operators in an EA and investigate whether or not their combinations outperform the sole usage of the best crossover operator. The traveling salesman problem and the graph bisection problem were chosen for experimentation. Strong synergy effects were observed in both problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/4235.996022</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2002-04, Vol.6 (2), p.212-223 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_miscellaneous_28417294 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Computer science Computer science control theory systems Connectionism. Neural networks Crossovers Empirical analysis Evolutionary algorithms Evolutionary computation Exact sciences and technology Experimentation Flows in networks. Combinatorial problems Genetic algorithms Genetic mutations Local optimization Moon Mutations Operational research and scientific management Operational research. Management science Operators Probability Sole Steady-state Testing Traveling salesman problems Very large scale integration |
title | An empirical study on the synergy of multiple crossover operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20study%20on%20the%20synergy%20of%20multiple%20crossover%20operators&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=YOON,%20Hyun-Sook&rft.date=2002-04-01&rft.volume=6&rft.issue=2&rft.spage=212&rft.epage=223&rft.pages=212-223&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/4235.996022&rft_dat=%3Cproquest_RIE%3E2430983221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884480140&rft_id=info:pmid/&rft_ieee_id=996022&rfr_iscdi=true |