Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction

The atom‐cluster interaction has recently been exploited as an effective way to increase the performance of metal‐nitrogen‐carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure‐property correlations remain a great chall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-09, Vol.62 (39), p.e202308344-n/a
Hauptverfasser: Qi, Chunhong, Yang, Haoyu, Sun, Ziqi, Wang, Haifeng, Xu, Na, Zhu, Guihua, Wang, Lianjun, Jiang, Wan, Yu, Xiqian, Li, Xiaopeng, Xiao, Qi, Qiu, Pengpeng, Luo, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page e202308344
container_title Angewandte Chemie International Edition
container_volume 62
creator Qi, Chunhong
Yang, Haoyu
Sun, Ziqi
Wang, Haifeng
Xu, Na
Zhu, Guihua
Wang, Lianjun
Jiang, Wan
Yu, Xiqian
Li, Xiaopeng
Xiao, Qi
Qiu, Pengpeng
Luo, Wei
description The atom‐cluster interaction has recently been exploited as an effective way to increase the performance of metal‐nitrogen‐carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure‐property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)−N4 single atoms (SAs) could significantly improve the ORR performance of a well‐screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu−N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O−O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu−N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half‐wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm−2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly‐metallic centers for electrocatalysis. Combined density functional theory calculation and experimental analysis demonstrate that the introduction of adjacent Cu−N4 single atoms could regulate the d orbitals of Fe clusters through rehybridization to improve the release of *OH intermediates, thus achieving excellent oxygen reduction reaction kinetics.
doi_str_mv 10.1002/anie.202308344
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841405280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890633871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-714b224349ddc1508e55342f7a164e194905d88bc275fde25e1e90e282e3238e3</originalsourceid><addsrcrecordid>eNqFkUuP0zAURi0EYh6wZYkssZlNip-Ns6yqDlNpoBID6yixb1pXblz8EIRfwU_GVYdBYsPKD53v3Ct9CL2hZEYJYe-70cKMEcaJ4kI8Q5dUMlrxuubPy11wXtVK0gt0FeO-8EqR-Ut0wWuhZNOoS_TrozfZdcmOW7xyoFPwo9X4IYWsUw4QsR_wunzipcsxQYg47YLP2x3ehN6mzuHPsJv6YI39WTQF7Ce8MPtOw5jwQ_E6wEt_PEIor1SEgw94NQxW2xOx-TFtYSwSUwaW-Cv0YuhchNeP5zX6erv6sryr7jcf1svFfaUF5aKqqegZE1w0xmgqiQIpuWBD3dG5ANqIhkijVK9ZLQcDTAKFhgBTDDjjCvg1ujl7j8F_yxBTe7BRg3PdCD7HlilBBZFMkYK--wfd-xzGsl2hGjLnXNW0ULMzpYOPMcDQHoM9dGFqKWlPXbWnrtqnrkrg7aM29wcwT_ifcgrQnIHv1sH0H127-LRe_ZX_BvywoZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890633871</pqid></control><display><type>article</type><title>Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qi, Chunhong ; Yang, Haoyu ; Sun, Ziqi ; Wang, Haifeng ; Xu, Na ; Zhu, Guihua ; Wang, Lianjun ; Jiang, Wan ; Yu, Xiqian ; Li, Xiaopeng ; Xiao, Qi ; Qiu, Pengpeng ; Luo, Wei</creator><creatorcontrib>Qi, Chunhong ; Yang, Haoyu ; Sun, Ziqi ; Wang, Haifeng ; Xu, Na ; Zhu, Guihua ; Wang, Lianjun ; Jiang, Wan ; Yu, Xiqian ; Li, Xiaopeng ; Xiao, Qi ; Qiu, Pengpeng ; Luo, Wei</creatorcontrib><description>The atom‐cluster interaction has recently been exploited as an effective way to increase the performance of metal‐nitrogen‐carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure‐property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)−N4 single atoms (SAs) could significantly improve the ORR performance of a well‐screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu−N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O−O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu−N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half‐wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm−2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly‐metallic centers for electrocatalysis. Combined density functional theory calculation and experimental analysis demonstrate that the introduction of adjacent Cu−N4 single atoms could regulate the d orbitals of Fe clusters through rehybridization to improve the release of *OH intermediates, thus achieving excellent oxygen reduction reaction kinetics.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202308344</identifier><identifier>PMID: 37485998</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Catalysts ; Chemical reduction ; Clusters ; Copper ; Cu Single Atom ; d-Orbital Modulation ; Density functional theory ; Intermediates ; Iron ; Iron Atomic Cluster ; Metal air batteries ; Nitrogen ; Oxygen Reduction Reaction ; Oxygen reduction reactions ; Zinc-oxygen batteries</subject><ispartof>Angewandte Chemie International Edition, 2023-09, Vol.62 (39), p.e202308344-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-714b224349ddc1508e55342f7a164e194905d88bc275fde25e1e90e282e3238e3</citedby><cites>FETCH-LOGICAL-c4134-714b224349ddc1508e55342f7a164e194905d88bc275fde25e1e90e282e3238e3</cites><orcidid>0000-0001-6126-899X ; 0000-0001-8513-518X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202308344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202308344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37485998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Chunhong</creatorcontrib><creatorcontrib>Yang, Haoyu</creatorcontrib><creatorcontrib>Sun, Ziqi</creatorcontrib><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Xu, Na</creatorcontrib><creatorcontrib>Zhu, Guihua</creatorcontrib><creatorcontrib>Wang, Lianjun</creatorcontrib><creatorcontrib>Jiang, Wan</creatorcontrib><creatorcontrib>Yu, Xiqian</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Xiao, Qi</creatorcontrib><creatorcontrib>Qiu, Pengpeng</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><title>Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The atom‐cluster interaction has recently been exploited as an effective way to increase the performance of metal‐nitrogen‐carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure‐property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)−N4 single atoms (SAs) could significantly improve the ORR performance of a well‐screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu−N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O−O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu−N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half‐wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm−2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly‐metallic centers for electrocatalysis. Combined density functional theory calculation and experimental analysis demonstrate that the introduction of adjacent Cu−N4 single atoms could regulate the d orbitals of Fe clusters through rehybridization to improve the release of *OH intermediates, thus achieving excellent oxygen reduction reaction kinetics.</description><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Clusters</subject><subject>Copper</subject><subject>Cu Single Atom</subject><subject>d-Orbital Modulation</subject><subject>Density functional theory</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Iron Atomic Cluster</subject><subject>Metal air batteries</subject><subject>Nitrogen</subject><subject>Oxygen Reduction Reaction</subject><subject>Oxygen reduction reactions</subject><subject>Zinc-oxygen batteries</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkUuP0zAURi0EYh6wZYkssZlNip-Ns6yqDlNpoBID6yixb1pXblz8EIRfwU_GVYdBYsPKD53v3Ct9CL2hZEYJYe-70cKMEcaJ4kI8Q5dUMlrxuubPy11wXtVK0gt0FeO-8EqR-Ut0wWuhZNOoS_TrozfZdcmOW7xyoFPwo9X4IYWsUw4QsR_wunzipcsxQYg47YLP2x3ehN6mzuHPsJv6YI39WTQF7Ce8MPtOw5jwQ_E6wEt_PEIor1SEgw94NQxW2xOx-TFtYSwSUwaW-Cv0YuhchNeP5zX6erv6sryr7jcf1svFfaUF5aKqqegZE1w0xmgqiQIpuWBD3dG5ANqIhkijVK9ZLQcDTAKFhgBTDDjjCvg1ujl7j8F_yxBTe7BRg3PdCD7HlilBBZFMkYK--wfd-xzGsl2hGjLnXNW0ULMzpYOPMcDQHoM9dGFqKWlPXbWnrtqnrkrg7aM29wcwT_ifcgrQnIHv1sH0H127-LRe_ZX_BvywoZ4</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Qi, Chunhong</creator><creator>Yang, Haoyu</creator><creator>Sun, Ziqi</creator><creator>Wang, Haifeng</creator><creator>Xu, Na</creator><creator>Zhu, Guihua</creator><creator>Wang, Lianjun</creator><creator>Jiang, Wan</creator><creator>Yu, Xiqian</creator><creator>Li, Xiaopeng</creator><creator>Xiao, Qi</creator><creator>Qiu, Pengpeng</creator><creator>Luo, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6126-899X</orcidid><orcidid>https://orcid.org/0000-0001-8513-518X</orcidid></search><sort><creationdate>20230925</creationdate><title>Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction</title><author>Qi, Chunhong ; Yang, Haoyu ; Sun, Ziqi ; Wang, Haifeng ; Xu, Na ; Zhu, Guihua ; Wang, Lianjun ; Jiang, Wan ; Yu, Xiqian ; Li, Xiaopeng ; Xiao, Qi ; Qiu, Pengpeng ; Luo, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-714b224349ddc1508e55342f7a164e194905d88bc275fde25e1e90e282e3238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Clusters</topic><topic>Copper</topic><topic>Cu Single Atom</topic><topic>d-Orbital Modulation</topic><topic>Density functional theory</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Iron Atomic Cluster</topic><topic>Metal air batteries</topic><topic>Nitrogen</topic><topic>Oxygen Reduction Reaction</topic><topic>Oxygen reduction reactions</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Chunhong</creatorcontrib><creatorcontrib>Yang, Haoyu</creatorcontrib><creatorcontrib>Sun, Ziqi</creatorcontrib><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Xu, Na</creatorcontrib><creatorcontrib>Zhu, Guihua</creatorcontrib><creatorcontrib>Wang, Lianjun</creatorcontrib><creatorcontrib>Jiang, Wan</creatorcontrib><creatorcontrib>Yu, Xiqian</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Xiao, Qi</creatorcontrib><creatorcontrib>Qiu, Pengpeng</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Chunhong</au><au>Yang, Haoyu</au><au>Sun, Ziqi</au><au>Wang, Haifeng</au><au>Xu, Na</au><au>Zhu, Guihua</au><au>Wang, Lianjun</au><au>Jiang, Wan</au><au>Yu, Xiqian</au><au>Li, Xiaopeng</au><au>Xiao, Qi</au><au>Qiu, Pengpeng</au><au>Luo, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-09-25</date><risdate>2023</risdate><volume>62</volume><issue>39</issue><spage>e202308344</spage><epage>n/a</epage><pages>e202308344-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The atom‐cluster interaction has recently been exploited as an effective way to increase the performance of metal‐nitrogen‐carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure‐property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)−N4 single atoms (SAs) could significantly improve the ORR performance of a well‐screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu−N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O−O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu−N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half‐wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm−2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly‐metallic centers for electrocatalysis. Combined density functional theory calculation and experimental analysis demonstrate that the introduction of adjacent Cu−N4 single atoms could regulate the d orbitals of Fe clusters through rehybridization to improve the release of *OH intermediates, thus achieving excellent oxygen reduction reaction kinetics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37485998</pmid><doi>10.1002/anie.202308344</doi><tpages>11</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-6126-899X</orcidid><orcidid>https://orcid.org/0000-0001-8513-518X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-09, Vol.62 (39), p.e202308344-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2841405280
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
Catalysts
Chemical reduction
Clusters
Copper
Cu Single Atom
d-Orbital Modulation
Density functional theory
Intermediates
Iron
Iron Atomic Cluster
Metal air batteries
Nitrogen
Oxygen Reduction Reaction
Oxygen reduction reactions
Zinc-oxygen batteries
title Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20Electronic%20Structures%20of%20Iron%20Clusters%20through%20Orbital%20Rehybridization%20by%20Adjacent%20Single%20Copper%20Sites%20for%20Efficient%20Oxygen%20Reduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Qi,%20Chunhong&rft.date=2023-09-25&rft.volume=62&rft.issue=39&rft.spage=e202308344&rft.epage=n/a&rft.pages=e202308344-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202308344&rft_dat=%3Cproquest_cross%3E2890633871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890633871&rft_id=info:pmid/37485998&rfr_iscdi=true