Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond
Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes chemical anchors by applying a hig...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-08, Vol.15 (31), p.12995-13008 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13008 |
---|---|
container_issue | 31 |
container_start_page | 12995 |
container_title | Nanoscale |
container_volume | 15 |
creator | Pabi, Biswajit Marek, Štepán Pal, Adwitiya Kumari, Puja Ray, Soumya Jyoti Thakur, Arunabha Korytár, Richard Pal, Atindra Nath |
description | Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes
chemical anchors by applying a high source-drain bias (>1 V), the conductance was limited to |
doi_str_mv | 10.1039/d3nr02585c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841401524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841401524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-34f65401045a9c0b89ec5fb03a4b001f153b08c93923f402f090e3486908a5863</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMofl_8ARLwIkJ10klqcpT1E0RB9FzSbKpd0mRN2gX_vdld9eBlZmCeeRheQo4YnDNAdTFFH6EUUpgNslsChwLxstz8myu-Q_ZSmgFUCivcJjt4ySWCVLtEv9gUvPYDHaL2aR7iQDtPNf3o3j_cFzXBT0czdP6dplycpX1w1oxORzobfd4ETxedpr0dtCtWNR8ttLPZ2eTrA7LVapfs4U_fJ2-3N6-T--Lx-e5hcvVYGGRiKJC3leDAgAutDDRSWSPaBlDzBoC1TGAD0ihUJbYcyhYUWOSyUiC1kBXuk9O1dx7D52jTUPddMtY57W0YU11KzrJflDyjJ__QWRijz98tKckU42opPFtTJoaUom3reex6Hb9qBvUy-Poan15WwU8yfPyjHJveTv_Q36TxG3SEfPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848191496</pqid></control><display><type>article</type><title>Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pabi, Biswajit ; Marek, Štepán ; Pal, Adwitiya ; Kumari, Puja ; Ray, Soumya Jyoti ; Thakur, Arunabha ; Korytár, Richard ; Pal, Atindra Nath</creator><creatorcontrib>Pabi, Biswajit ; Marek, Štepán ; Pal, Adwitiya ; Kumari, Puja ; Ray, Soumya Jyoti ; Thakur, Arunabha ; Korytár, Richard ; Pal, Atindra Nath</creatorcontrib><description>Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes
chemical anchors by applying a high source-drain bias (>1 V), the conductance was limited to <0.1
,
being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at ∼0.2
in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH
) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (<0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of ∼660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr02585c</identifier><identifier>PMID: 37483089</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bias ; Chemical bonds ; Controllability ; Covalent bonds ; Density functional theory ; Electrodes ; Electron transport ; Gold ; Histograms ; Mathematical analysis ; Molecular conformation ; Statistical analysis ; Transmission</subject><ispartof>Nanoscale, 2023-08, Vol.15 (31), p.12995-13008</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-34f65401045a9c0b89ec5fb03a4b001f153b08c93923f402f090e3486908a5863</citedby><cites>FETCH-LOGICAL-c315t-34f65401045a9c0b89ec5fb03a4b001f153b08c93923f402f090e3486908a5863</cites><orcidid>0000-0002-4640-708X ; 0000-0001-9584-2283 ; 0000-0002-9200-0897 ; 0000-0003-4577-3683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37483089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pabi, Biswajit</creatorcontrib><creatorcontrib>Marek, Štepán</creatorcontrib><creatorcontrib>Pal, Adwitiya</creatorcontrib><creatorcontrib>Kumari, Puja</creatorcontrib><creatorcontrib>Ray, Soumya Jyoti</creatorcontrib><creatorcontrib>Thakur, Arunabha</creatorcontrib><creatorcontrib>Korytár, Richard</creatorcontrib><creatorcontrib>Pal, Atindra Nath</creatorcontrib><title>Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes
chemical anchors by applying a high source-drain bias (>1 V), the conductance was limited to <0.1
,
being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at ∼0.2
in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH
) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (<0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of ∼660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.</description><subject>Bias</subject><subject>Chemical bonds</subject><subject>Controllability</subject><subject>Covalent bonds</subject><subject>Density functional theory</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Gold</subject><subject>Histograms</subject><subject>Mathematical analysis</subject><subject>Molecular conformation</subject><subject>Statistical analysis</subject><subject>Transmission</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMofl_8ARLwIkJ10klqcpT1E0RB9FzSbKpd0mRN2gX_vdld9eBlZmCeeRheQo4YnDNAdTFFH6EUUpgNslsChwLxstz8myu-Q_ZSmgFUCivcJjt4ySWCVLtEv9gUvPYDHaL2aR7iQDtPNf3o3j_cFzXBT0czdP6dplycpX1w1oxORzobfd4ETxedpr0dtCtWNR8ttLPZ2eTrA7LVapfs4U_fJ2-3N6-T--Lx-e5hcvVYGGRiKJC3leDAgAutDDRSWSPaBlDzBoC1TGAD0ihUJbYcyhYUWOSyUiC1kBXuk9O1dx7D52jTUPddMtY57W0YU11KzrJflDyjJ__QWRijz98tKckU42opPFtTJoaUom3reex6Hb9qBvUy-Poan15WwU8yfPyjHJveTv_Q36TxG3SEfPU</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Pabi, Biswajit</creator><creator>Marek, Štepán</creator><creator>Pal, Adwitiya</creator><creator>Kumari, Puja</creator><creator>Ray, Soumya Jyoti</creator><creator>Thakur, Arunabha</creator><creator>Korytár, Richard</creator><creator>Pal, Atindra Nath</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4640-708X</orcidid><orcidid>https://orcid.org/0000-0001-9584-2283</orcidid><orcidid>https://orcid.org/0000-0002-9200-0897</orcidid><orcidid>https://orcid.org/0000-0003-4577-3683</orcidid></search><sort><creationdate>20230810</creationdate><title>Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond</title><author>Pabi, Biswajit ; Marek, Štepán ; Pal, Adwitiya ; Kumari, Puja ; Ray, Soumya Jyoti ; Thakur, Arunabha ; Korytár, Richard ; Pal, Atindra Nath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-34f65401045a9c0b89ec5fb03a4b001f153b08c93923f402f090e3486908a5863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Chemical bonds</topic><topic>Controllability</topic><topic>Covalent bonds</topic><topic>Density functional theory</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Gold</topic><topic>Histograms</topic><topic>Mathematical analysis</topic><topic>Molecular conformation</topic><topic>Statistical analysis</topic><topic>Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pabi, Biswajit</creatorcontrib><creatorcontrib>Marek, Štepán</creatorcontrib><creatorcontrib>Pal, Adwitiya</creatorcontrib><creatorcontrib>Kumari, Puja</creatorcontrib><creatorcontrib>Ray, Soumya Jyoti</creatorcontrib><creatorcontrib>Thakur, Arunabha</creatorcontrib><creatorcontrib>Korytár, Richard</creatorcontrib><creatorcontrib>Pal, Atindra Nath</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pabi, Biswajit</au><au>Marek, Štepán</au><au>Pal, Adwitiya</au><au>Kumari, Puja</au><au>Ray, Soumya Jyoti</au><au>Thakur, Arunabha</au><au>Korytár, Richard</au><au>Pal, Atindra Nath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-08-10</date><risdate>2023</risdate><volume>15</volume><issue>31</issue><spage>12995</spage><epage>13008</epage><pages>12995-13008</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes
chemical anchors by applying a high source-drain bias (>1 V), the conductance was limited to <0.1
,
being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at ∼0.2
in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH
) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (<0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of ∼660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37483089</pmid><doi>10.1039/d3nr02585c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4640-708X</orcidid><orcidid>https://orcid.org/0000-0001-9584-2283</orcidid><orcidid>https://orcid.org/0000-0002-9200-0897</orcidid><orcidid>https://orcid.org/0000-0003-4577-3683</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-08, Vol.15 (31), p.12995-13008 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2841401524 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bias Chemical bonds Controllability Covalent bonds Density functional theory Electrodes Electron transport Gold Histograms Mathematical analysis Molecular conformation Statistical analysis Transmission |
title | Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20transport%20in%20a%20highly%20conducting%20single%20molecular%20junction%20via%20metal-metal%20covalent%20bond&rft.jtitle=Nanoscale&rft.au=Pabi,%20Biswajit&rft.date=2023-08-10&rft.volume=15&rft.issue=31&rft.spage=12995&rft.epage=13008&rft.pages=12995-13008&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr02585c&rft_dat=%3Cproquest_cross%3E2841401524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848191496&rft_id=info:pmid/37483089&rfr_iscdi=true |