Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond

Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes chemical anchors by applying a hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-08, Vol.15 (31), p.12995-13008
Hauptverfasser: Pabi, Biswajit, Marek, Štepán, Pal, Adwitiya, Kumari, Puja, Ray, Soumya Jyoti, Thakur, Arunabha, Korytár, Richard, Pal, Atindra Nath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13008
container_issue 31
container_start_page 12995
container_title Nanoscale
container_volume 15
creator Pabi, Biswajit
Marek, Štepán
Pal, Adwitiya
Kumari, Puja
Ray, Soumya Jyoti
Thakur, Arunabha
Korytár, Richard
Pal, Atindra Nath
description Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes chemical anchors by applying a high source-drain bias (>1 V), the conductance was limited to
doi_str_mv 10.1039/d3nr02585c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841401524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841401524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-34f65401045a9c0b89ec5fb03a4b001f153b08c93923f402f090e3486908a5863</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMofl_8ARLwIkJ10klqcpT1E0RB9FzSbKpd0mRN2gX_vdld9eBlZmCeeRheQo4YnDNAdTFFH6EUUpgNslsChwLxstz8myu-Q_ZSmgFUCivcJjt4ySWCVLtEv9gUvPYDHaL2aR7iQDtPNf3o3j_cFzXBT0czdP6dplycpX1w1oxORzobfd4ETxedpr0dtCtWNR8ttLPZ2eTrA7LVapfs4U_fJ2-3N6-T--Lx-e5hcvVYGGRiKJC3leDAgAutDDRSWSPaBlDzBoC1TGAD0ihUJbYcyhYUWOSyUiC1kBXuk9O1dx7D52jTUPddMtY57W0YU11KzrJflDyjJ__QWRijz98tKckU42opPFtTJoaUom3reex6Hb9qBvUy-Poan15WwU8yfPyjHJveTv_Q36TxG3SEfPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848191496</pqid></control><display><type>article</type><title>Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pabi, Biswajit ; Marek, Štepán ; Pal, Adwitiya ; Kumari, Puja ; Ray, Soumya Jyoti ; Thakur, Arunabha ; Korytár, Richard ; Pal, Atindra Nath</creator><creatorcontrib>Pabi, Biswajit ; Marek, Štepán ; Pal, Adwitiya ; Kumari, Puja ; Ray, Soumya Jyoti ; Thakur, Arunabha ; Korytár, Richard ; Pal, Atindra Nath</creatorcontrib><description>Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes chemical anchors by applying a high source-drain bias (&gt;1 V), the conductance was limited to &lt;0.1 , being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at ∼0.2 in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH ) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (&lt;0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of ∼660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr02585c</identifier><identifier>PMID: 37483089</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bias ; Chemical bonds ; Controllability ; Covalent bonds ; Density functional theory ; Electrodes ; Electron transport ; Gold ; Histograms ; Mathematical analysis ; Molecular conformation ; Statistical analysis ; Transmission</subject><ispartof>Nanoscale, 2023-08, Vol.15 (31), p.12995-13008</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-34f65401045a9c0b89ec5fb03a4b001f153b08c93923f402f090e3486908a5863</citedby><cites>FETCH-LOGICAL-c315t-34f65401045a9c0b89ec5fb03a4b001f153b08c93923f402f090e3486908a5863</cites><orcidid>0000-0002-4640-708X ; 0000-0001-9584-2283 ; 0000-0002-9200-0897 ; 0000-0003-4577-3683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37483089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pabi, Biswajit</creatorcontrib><creatorcontrib>Marek, Štepán</creatorcontrib><creatorcontrib>Pal, Adwitiya</creatorcontrib><creatorcontrib>Kumari, Puja</creatorcontrib><creatorcontrib>Ray, Soumya Jyoti</creatorcontrib><creatorcontrib>Thakur, Arunabha</creatorcontrib><creatorcontrib>Korytár, Richard</creatorcontrib><creatorcontrib>Pal, Atindra Nath</creatorcontrib><title>Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes chemical anchors by applying a high source-drain bias (&gt;1 V), the conductance was limited to &lt;0.1 , being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at ∼0.2 in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH ) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (&lt;0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of ∼660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.</description><subject>Bias</subject><subject>Chemical bonds</subject><subject>Controllability</subject><subject>Covalent bonds</subject><subject>Density functional theory</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Gold</subject><subject>Histograms</subject><subject>Mathematical analysis</subject><subject>Molecular conformation</subject><subject>Statistical analysis</subject><subject>Transmission</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMofl_8ARLwIkJ10klqcpT1E0RB9FzSbKpd0mRN2gX_vdld9eBlZmCeeRheQo4YnDNAdTFFH6EUUpgNslsChwLxstz8myu-Q_ZSmgFUCivcJjt4ySWCVLtEv9gUvPYDHaL2aR7iQDtPNf3o3j_cFzXBT0czdP6dplycpX1w1oxORzobfd4ETxedpr0dtCtWNR8ttLPZ2eTrA7LVapfs4U_fJ2-3N6-T--Lx-e5hcvVYGGRiKJC3leDAgAutDDRSWSPaBlDzBoC1TGAD0ihUJbYcyhYUWOSyUiC1kBXuk9O1dx7D52jTUPddMtY57W0YU11KzrJflDyjJ__QWRijz98tKckU42opPFtTJoaUom3reex6Hb9qBvUy-Poan15WwU8yfPyjHJveTv_Q36TxG3SEfPU</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Pabi, Biswajit</creator><creator>Marek, Štepán</creator><creator>Pal, Adwitiya</creator><creator>Kumari, Puja</creator><creator>Ray, Soumya Jyoti</creator><creator>Thakur, Arunabha</creator><creator>Korytár, Richard</creator><creator>Pal, Atindra Nath</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4640-708X</orcidid><orcidid>https://orcid.org/0000-0001-9584-2283</orcidid><orcidid>https://orcid.org/0000-0002-9200-0897</orcidid><orcidid>https://orcid.org/0000-0003-4577-3683</orcidid></search><sort><creationdate>20230810</creationdate><title>Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond</title><author>Pabi, Biswajit ; Marek, Štepán ; Pal, Adwitiya ; Kumari, Puja ; Ray, Soumya Jyoti ; Thakur, Arunabha ; Korytár, Richard ; Pal, Atindra Nath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-34f65401045a9c0b89ec5fb03a4b001f153b08c93923f402f090e3486908a5863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Chemical bonds</topic><topic>Controllability</topic><topic>Covalent bonds</topic><topic>Density functional theory</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Gold</topic><topic>Histograms</topic><topic>Mathematical analysis</topic><topic>Molecular conformation</topic><topic>Statistical analysis</topic><topic>Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pabi, Biswajit</creatorcontrib><creatorcontrib>Marek, Štepán</creatorcontrib><creatorcontrib>Pal, Adwitiya</creatorcontrib><creatorcontrib>Kumari, Puja</creatorcontrib><creatorcontrib>Ray, Soumya Jyoti</creatorcontrib><creatorcontrib>Thakur, Arunabha</creatorcontrib><creatorcontrib>Korytár, Richard</creatorcontrib><creatorcontrib>Pal, Atindra Nath</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pabi, Biswajit</au><au>Marek, Štepán</au><au>Pal, Adwitiya</au><au>Kumari, Puja</au><au>Ray, Soumya Jyoti</au><au>Thakur, Arunabha</au><au>Korytár, Richard</au><au>Pal, Atindra Nath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-08-10</date><risdate>2023</risdate><volume>15</volume><issue>31</issue><spage>12995</spage><epage>13008</epage><pages>12995-13008</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes chemical anchors by applying a high source-drain bias (&gt;1 V), the conductance was limited to &lt;0.1 , being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at ∼0.2 in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH ) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (&lt;0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of ∼660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37483089</pmid><doi>10.1039/d3nr02585c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4640-708X</orcidid><orcidid>https://orcid.org/0000-0001-9584-2283</orcidid><orcidid>https://orcid.org/0000-0002-9200-0897</orcidid><orcidid>https://orcid.org/0000-0003-4577-3683</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-08, Vol.15 (31), p.12995-13008
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2841401524
source Royal Society Of Chemistry Journals 2008-
subjects Bias
Chemical bonds
Controllability
Covalent bonds
Density functional theory
Electrodes
Electron transport
Gold
Histograms
Mathematical analysis
Molecular conformation
Statistical analysis
Transmission
title Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20transport%20in%20a%20highly%20conducting%20single%20molecular%20junction%20via%20metal-metal%20covalent%20bond&rft.jtitle=Nanoscale&rft.au=Pabi,%20Biswajit&rft.date=2023-08-10&rft.volume=15&rft.issue=31&rft.spage=12995&rft.epage=13008&rft.pages=12995-13008&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr02585c&rft_dat=%3Cproquest_cross%3E2841401524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848191496&rft_id=info:pmid/37483089&rfr_iscdi=true