Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalyst...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-10, Vol.62 (40), p.e202306456-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | e202306456 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Wang, Min Chen, Huimin Wang, Min Wang, Jinxiu Tuo, Yongxiao Li, Wenzhen Zhou, Shanshan Kong, Linghui Liu, Guangbo Jiang, Luhua Wang, Guoxiong |
description | Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.
For the first time, we report a tuning C1/C2 selectivity of CO2 electrochemical reduction over in situ electrochemically evolved CuO/SnO2 heterostructure. Specifically, the synergetic absorption of *COOH and *CHOCO intermediates at the interface of the newly evolved Cu/SnO2‐x facilitates ethanol generation. |
doi_str_mv | 10.1002/anie.202306456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841401194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867959500</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2896-9afc66f519fe197c4fce5aa9e77aed8d155ccbf769f9472d55da1636bb828cfc3</originalsourceid><addsrcrecordid>eNpd0ctuEzEUBmALgWgpbFkiS2zYTOP7ZVmNAq1UEYmU9cjxHIOryTh4xkHZ8Qg8Y5-kjlqyYOVj-_PRkX-E3lNySQlhCzdGuGSEcaKEVC_QOZWMNlxr_rLWgvNGG0nP0Jtpuq_eGKJeozOuhZFaiXMU78oYxx-4pYuW4TUM4Oe4j_MBp4DbFcPL40lO_idso3cD_gZ9qSSNOO0h4zg-_Pm7jnPBy30a9tDjtqwW67G-vIYZcprmXH3J8Ba9Cm6Y4N3zeoG-f17etdfN7erLTXt12-yYsaqxLnilgqQ2ALXai-BBOmdBawe96amU3m-CVjZYoVkvZe-o4mqzMcz44PkF-vTUd5fTrwLT3G3j5GEY3AipTB0zggpCqRWVfvyP3qeSxzpdVUpbaSUhVX14VmWzhb7b5bh1-dD9-8QK7BP4HQc4nO4p6Y4RdceIulNE3dXXm-Vpxx8BP6qFdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867959500</pqid></control><display><type>article</type><title>Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Min ; Chen, Huimin ; Wang, Min ; Wang, Jinxiu ; Tuo, Yongxiao ; Li, Wenzhen ; Zhou, Shanshan ; Kong, Linghui ; Liu, Guangbo ; Jiang, Luhua ; Wang, Guoxiong</creator><creatorcontrib>Wang, Min ; Chen, Huimin ; Wang, Min ; Wang, Jinxiu ; Tuo, Yongxiao ; Li, Wenzhen ; Zhou, Shanshan ; Kong, Linghui ; Liu, Guangbo ; Jiang, Luhua ; Wang, Guoxiong</creatorcontrib><description>Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.
For the first time, we report a tuning C1/C2 selectivity of CO2 electrochemical reduction over in situ electrochemically evolved CuO/SnO2 heterostructure. Specifically, the synergetic absorption of *COOH and *CHOCO intermediates at the interface of the newly evolved Cu/SnO2‐x facilitates ethanol generation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202306456</identifier><identifier>PMID: 37485764</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; Chemical reduction ; CO2 Electrochemical Reduction ; Copper oxides ; Density functional theory ; DFT Calculations ; Electrochemistry ; Ethanol ; Heterostructure ; Heterostructures ; in-Situ Characterization ; Intermediates ; Raman spectra ; Raman spectroscopy ; Reaction mechanisms ; Reconstruction ; Selectivity to Ethanol ; Tin dioxide ; Working conditions</subject><ispartof>Angewandte Chemie International Edition, 2023-10, Vol.62 (40), p.e202306456-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1462-3693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202306456$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202306456$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37485764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wang, Jinxiu</creatorcontrib><creatorcontrib>Tuo, Yongxiao</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><creatorcontrib>Zhou, Shanshan</creatorcontrib><creatorcontrib>Kong, Linghui</creatorcontrib><creatorcontrib>Liu, Guangbo</creatorcontrib><creatorcontrib>Jiang, Luhua</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><title>Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.
For the first time, we report a tuning C1/C2 selectivity of CO2 electrochemical reduction over in situ electrochemically evolved CuO/SnO2 heterostructure. Specifically, the synergetic absorption of *COOH and *CHOCO intermediates at the interface of the newly evolved Cu/SnO2‐x facilitates ethanol generation.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2 Electrochemical Reduction</subject><subject>Copper oxides</subject><subject>Density functional theory</subject><subject>DFT Calculations</subject><subject>Electrochemistry</subject><subject>Ethanol</subject><subject>Heterostructure</subject><subject>Heterostructures</subject><subject>in-Situ Characterization</subject><subject>Intermediates</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Reaction mechanisms</subject><subject>Reconstruction</subject><subject>Selectivity to Ethanol</subject><subject>Tin dioxide</subject><subject>Working conditions</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0ctuEzEUBmALgWgpbFkiS2zYTOP7ZVmNAq1UEYmU9cjxHIOryTh4xkHZ8Qg8Y5-kjlqyYOVj-_PRkX-E3lNySQlhCzdGuGSEcaKEVC_QOZWMNlxr_rLWgvNGG0nP0Jtpuq_eGKJeozOuhZFaiXMU78oYxx-4pYuW4TUM4Oe4j_MBp4DbFcPL40lO_idso3cD_gZ9qSSNOO0h4zg-_Pm7jnPBy30a9tDjtqwW67G-vIYZcprmXH3J8Ba9Cm6Y4N3zeoG-f17etdfN7erLTXt12-yYsaqxLnilgqQ2ALXai-BBOmdBawe96amU3m-CVjZYoVkvZe-o4mqzMcz44PkF-vTUd5fTrwLT3G3j5GEY3AipTB0zggpCqRWVfvyP3qeSxzpdVUpbaSUhVX14VmWzhb7b5bh1-dD9-8QK7BP4HQc4nO4p6Y4RdceIulNE3dXXm-Vpxx8BP6qFdw</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Wang, Min</creator><creator>Chen, Huimin</creator><creator>Wang, Min</creator><creator>Wang, Jinxiu</creator><creator>Tuo, Yongxiao</creator><creator>Li, Wenzhen</creator><creator>Zhou, Shanshan</creator><creator>Kong, Linghui</creator><creator>Liu, Guangbo</creator><creator>Jiang, Luhua</creator><creator>Wang, Guoxiong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1462-3693</orcidid></search><sort><creationdate>20231002</creationdate><title>Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure</title><author>Wang, Min ; Chen, Huimin ; Wang, Min ; Wang, Jinxiu ; Tuo, Yongxiao ; Li, Wenzhen ; Zhou, Shanshan ; Kong, Linghui ; Liu, Guangbo ; Jiang, Luhua ; Wang, Guoxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2896-9afc66f519fe197c4fce5aa9e77aed8d155ccbf769f9472d55da1636bb828cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2 Electrochemical Reduction</topic><topic>Copper oxides</topic><topic>Density functional theory</topic><topic>DFT Calculations</topic><topic>Electrochemistry</topic><topic>Ethanol</topic><topic>Heterostructure</topic><topic>Heterostructures</topic><topic>in-Situ Characterization</topic><topic>Intermediates</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Reaction mechanisms</topic><topic>Reconstruction</topic><topic>Selectivity to Ethanol</topic><topic>Tin dioxide</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wang, Jinxiu</creatorcontrib><creatorcontrib>Tuo, Yongxiao</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><creatorcontrib>Zhou, Shanshan</creatorcontrib><creatorcontrib>Kong, Linghui</creatorcontrib><creatorcontrib>Liu, Guangbo</creatorcontrib><creatorcontrib>Jiang, Luhua</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Min</au><au>Chen, Huimin</au><au>Wang, Min</au><au>Wang, Jinxiu</au><au>Tuo, Yongxiao</au><au>Li, Wenzhen</au><au>Zhou, Shanshan</au><au>Kong, Linghui</au><au>Liu, Guangbo</au><au>Jiang, Luhua</au><au>Wang, Guoxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-10-02</date><risdate>2023</risdate><volume>62</volume><issue>40</issue><spage>e202306456</spage><epage>n/a</epage><pages>e202306456-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.
For the first time, we report a tuning C1/C2 selectivity of CO2 electrochemical reduction over in situ electrochemically evolved CuO/SnO2 heterostructure. Specifically, the synergetic absorption of *COOH and *CHOCO intermediates at the interface of the newly evolved Cu/SnO2‐x facilitates ethanol generation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37485764</pmid><doi>10.1002/anie.202306456</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-1462-3693</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-10, Vol.62 (40), p.e202306456-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2841401194 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon dioxide Catalysts Chemical reduction CO2 Electrochemical Reduction Copper oxides Density functional theory DFT Calculations Electrochemistry Ethanol Heterostructure Heterostructures in-Situ Characterization Intermediates Raman spectra Raman spectroscopy Reaction mechanisms Reconstruction Selectivity to Ethanol Tin dioxide Working conditions |
title | Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20C1/C2%20Selectivity%20of%20CO2%20Electrochemical%20Reduction%20over%20in%E2%80%90Situ%20Evolved%20CuO/SnO2%20Heterostructure&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Min&rft.date=2023-10-02&rft.volume=62&rft.issue=40&rft.spage=e202306456&rft.epage=n/a&rft.pages=e202306456-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202306456&rft_dat=%3Cproquest_pubme%3E2867959500%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867959500&rft_id=info:pmid/37485764&rfr_iscdi=true |