Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure

Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-10, Vol.62 (40), p.e202306456-n/a
Hauptverfasser: Wang, Min, Chen, Huimin, Wang, Jinxiu, Tuo, Yongxiao, Li, Wenzhen, Zhou, Shanshan, Kong, Linghui, Liu, Guangbo, Jiang, Luhua, Wang, Guoxiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page e202306456
container_title Angewandte Chemie International Edition
container_volume 62
creator Wang, Min
Chen, Huimin
Wang, Min
Wang, Jinxiu
Tuo, Yongxiao
Li, Wenzhen
Zhou, Shanshan
Kong, Linghui
Liu, Guangbo
Jiang, Luhua
Wang, Guoxiong
description Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol. For the first time, we report a tuning C1/C2 selectivity of CO2 electrochemical reduction over in situ electrochemically evolved CuO/SnO2 heterostructure. Specifically, the synergetic absorption of *COOH and *CHOCO intermediates at the interface of the newly evolved Cu/SnO2‐x facilitates ethanol generation.
doi_str_mv 10.1002/anie.202306456
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841401194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867959500</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2896-9afc66f519fe197c4fce5aa9e77aed8d155ccbf769f9472d55da1636bb828cfc3</originalsourceid><addsrcrecordid>eNpd0ctuEzEUBmALgWgpbFkiS2zYTOP7ZVmNAq1UEYmU9cjxHIOryTh4xkHZ8Qg8Y5-kjlqyYOVj-_PRkX-E3lNySQlhCzdGuGSEcaKEVC_QOZWMNlxr_rLWgvNGG0nP0Jtpuq_eGKJeozOuhZFaiXMU78oYxx-4pYuW4TUM4Oe4j_MBp4DbFcPL40lO_idso3cD_gZ9qSSNOO0h4zg-_Pm7jnPBy30a9tDjtqwW67G-vIYZcprmXH3J8Ba9Cm6Y4N3zeoG-f17etdfN7erLTXt12-yYsaqxLnilgqQ2ALXai-BBOmdBawe96amU3m-CVjZYoVkvZe-o4mqzMcz44PkF-vTUd5fTrwLT3G3j5GEY3AipTB0zggpCqRWVfvyP3qeSxzpdVUpbaSUhVX14VmWzhb7b5bh1-dD9-8QK7BP4HQc4nO4p6Y4RdceIulNE3dXXm-Vpxx8BP6qFdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867959500</pqid></control><display><type>article</type><title>Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Min ; Chen, Huimin ; Wang, Min ; Wang, Jinxiu ; Tuo, Yongxiao ; Li, Wenzhen ; Zhou, Shanshan ; Kong, Linghui ; Liu, Guangbo ; Jiang, Luhua ; Wang, Guoxiong</creator><creatorcontrib>Wang, Min ; Chen, Huimin ; Wang, Min ; Wang, Jinxiu ; Tuo, Yongxiao ; Li, Wenzhen ; Zhou, Shanshan ; Kong, Linghui ; Liu, Guangbo ; Jiang, Luhua ; Wang, Guoxiong</creatorcontrib><description>Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol. For the first time, we report a tuning C1/C2 selectivity of CO2 electrochemical reduction over in situ electrochemically evolved CuO/SnO2 heterostructure. Specifically, the synergetic absorption of *COOH and *CHOCO intermediates at the interface of the newly evolved Cu/SnO2‐x facilitates ethanol generation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202306456</identifier><identifier>PMID: 37485764</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; Chemical reduction ; CO2 Electrochemical Reduction ; Copper oxides ; Density functional theory ; DFT Calculations ; Electrochemistry ; Ethanol ; Heterostructure ; Heterostructures ; in-Situ Characterization ; Intermediates ; Raman spectra ; Raman spectroscopy ; Reaction mechanisms ; Reconstruction ; Selectivity to Ethanol ; Tin dioxide ; Working conditions</subject><ispartof>Angewandte Chemie International Edition, 2023-10, Vol.62 (40), p.e202306456-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1462-3693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202306456$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202306456$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37485764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wang, Jinxiu</creatorcontrib><creatorcontrib>Tuo, Yongxiao</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><creatorcontrib>Zhou, Shanshan</creatorcontrib><creatorcontrib>Kong, Linghui</creatorcontrib><creatorcontrib>Liu, Guangbo</creatorcontrib><creatorcontrib>Jiang, Luhua</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><title>Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol. For the first time, we report a tuning C1/C2 selectivity of CO2 electrochemical reduction over in situ electrochemically evolved CuO/SnO2 heterostructure. Specifically, the synergetic absorption of *COOH and *CHOCO intermediates at the interface of the newly evolved Cu/SnO2‐x facilitates ethanol generation.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2 Electrochemical Reduction</subject><subject>Copper oxides</subject><subject>Density functional theory</subject><subject>DFT Calculations</subject><subject>Electrochemistry</subject><subject>Ethanol</subject><subject>Heterostructure</subject><subject>Heterostructures</subject><subject>in-Situ Characterization</subject><subject>Intermediates</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Reaction mechanisms</subject><subject>Reconstruction</subject><subject>Selectivity to Ethanol</subject><subject>Tin dioxide</subject><subject>Working conditions</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0ctuEzEUBmALgWgpbFkiS2zYTOP7ZVmNAq1UEYmU9cjxHIOryTh4xkHZ8Qg8Y5-kjlqyYOVj-_PRkX-E3lNySQlhCzdGuGSEcaKEVC_QOZWMNlxr_rLWgvNGG0nP0Jtpuq_eGKJeozOuhZFaiXMU78oYxx-4pYuW4TUM4Oe4j_MBp4DbFcPL40lO_idso3cD_gZ9qSSNOO0h4zg-_Pm7jnPBy30a9tDjtqwW67G-vIYZcprmXH3J8Ba9Cm6Y4N3zeoG-f17etdfN7erLTXt12-yYsaqxLnilgqQ2ALXai-BBOmdBawe96amU3m-CVjZYoVkvZe-o4mqzMcz44PkF-vTUd5fTrwLT3G3j5GEY3AipTB0zggpCqRWVfvyP3qeSxzpdVUpbaSUhVX14VmWzhb7b5bh1-dD9-8QK7BP4HQc4nO4p6Y4RdceIulNE3dXXm-Vpxx8BP6qFdw</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Wang, Min</creator><creator>Chen, Huimin</creator><creator>Wang, Min</creator><creator>Wang, Jinxiu</creator><creator>Tuo, Yongxiao</creator><creator>Li, Wenzhen</creator><creator>Zhou, Shanshan</creator><creator>Kong, Linghui</creator><creator>Liu, Guangbo</creator><creator>Jiang, Luhua</creator><creator>Wang, Guoxiong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1462-3693</orcidid></search><sort><creationdate>20231002</creationdate><title>Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure</title><author>Wang, Min ; Chen, Huimin ; Wang, Min ; Wang, Jinxiu ; Tuo, Yongxiao ; Li, Wenzhen ; Zhou, Shanshan ; Kong, Linghui ; Liu, Guangbo ; Jiang, Luhua ; Wang, Guoxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2896-9afc66f519fe197c4fce5aa9e77aed8d155ccbf769f9472d55da1636bb828cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2 Electrochemical Reduction</topic><topic>Copper oxides</topic><topic>Density functional theory</topic><topic>DFT Calculations</topic><topic>Electrochemistry</topic><topic>Ethanol</topic><topic>Heterostructure</topic><topic>Heterostructures</topic><topic>in-Situ Characterization</topic><topic>Intermediates</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Reaction mechanisms</topic><topic>Reconstruction</topic><topic>Selectivity to Ethanol</topic><topic>Tin dioxide</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wang, Jinxiu</creatorcontrib><creatorcontrib>Tuo, Yongxiao</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><creatorcontrib>Zhou, Shanshan</creatorcontrib><creatorcontrib>Kong, Linghui</creatorcontrib><creatorcontrib>Liu, Guangbo</creatorcontrib><creatorcontrib>Jiang, Luhua</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Min</au><au>Chen, Huimin</au><au>Wang, Min</au><au>Wang, Jinxiu</au><au>Tuo, Yongxiao</au><au>Li, Wenzhen</au><au>Zhou, Shanshan</au><au>Kong, Linghui</au><au>Liu, Guangbo</au><au>Jiang, Luhua</au><au>Wang, Guoxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-10-02</date><risdate>2023</risdate><volume>62</volume><issue>40</issue><spage>e202306456</spage><epage>n/a</epage><pages>e202306456-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol. For the first time, we report a tuning C1/C2 selectivity of CO2 electrochemical reduction over in situ electrochemically evolved CuO/SnO2 heterostructure. Specifically, the synergetic absorption of *COOH and *CHOCO intermediates at the interface of the newly evolved Cu/SnO2‐x facilitates ethanol generation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37485764</pmid><doi>10.1002/anie.202306456</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-1462-3693</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-10, Vol.62 (40), p.e202306456-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2841401194
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Catalysts
Chemical reduction
CO2 Electrochemical Reduction
Copper oxides
Density functional theory
DFT Calculations
Electrochemistry
Ethanol
Heterostructure
Heterostructures
in-Situ Characterization
Intermediates
Raman spectra
Raman spectroscopy
Reaction mechanisms
Reconstruction
Selectivity to Ethanol
Tin dioxide
Working conditions
title Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20C1/C2%20Selectivity%20of%20CO2%20Electrochemical%20Reduction%20over%20in%E2%80%90Situ%20Evolved%20CuO/SnO2%20Heterostructure&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Min&rft.date=2023-10-02&rft.volume=62&rft.issue=40&rft.spage=e202306456&rft.epage=n/a&rft.pages=e202306456-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202306456&rft_dat=%3Cproquest_pubme%3E2867959500%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867959500&rft_id=info:pmid/37485764&rfr_iscdi=true