An aggregation of aggregation methods in computational pathology

•We provide a comprehensive review of a range of aggregation methods and their role in the predictive modelling of multi-gigapixel whole-slide images (WSIs).•We categorize aggregation methods according to the context and representation of the data, features of computational modules and digital patho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2023-08, Vol.88, p.102885-102885, Article 102885
Hauptverfasser: Bilal, Mohsin, Jewsbury, Robert, Wang, Ruoyu, AlGhamdi, Hammam M., Asif, Amina, Eastwood, Mark, Rajpoot, Nasir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102885
container_issue
container_start_page 102885
container_title Medical image analysis
container_volume 88
creator Bilal, Mohsin
Jewsbury, Robert
Wang, Ruoyu
AlGhamdi, Hammam M.
Asif, Amina
Eastwood, Mark
Rajpoot, Nasir
description •We provide a comprehensive review of a range of aggregation methods and their role in the predictive modelling of multi-gigapixel whole-slide images (WSIs).•We categorize aggregation methods according to the context and representation of the data, features of computational modules and digital pathology applications.•As a case study, we explore different aggregation approaches for the task of Human papillomavirus (HPV) infection status prediction in head and neck cancers in an attempt to perform a fair comparative evaluation.•Our analysis resulted in merits of the various approaches, identifying several objectives, challenges and desirable attributes of aggregation methods, recommendations and possible future directions. Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods with a view to help guide future research in the area of computational pathology (CPath). We propose a general CPath workflow with three pathways that consider multiple levels and types of data and the nature of computation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and representation of the data, features of computational modules and CPath use cases. We compare and contrast different methods based on the principle of multiple instance learning, perhaps the most commonly used aggregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, some recommendations and possible future directions. [Display omitted]
doi_str_mv 10.1016/j.media.2023.102885
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841027238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841523001457</els_id><sourcerecordid>2841027238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2be0db8576eba8ec18a6b5ebe9e8e0f6d91c1bc236d26c00ead7c1c2dd8a82823</originalsourceid><addsrcrecordid>eNp9kEtPwzAMgCMEYmPwC5BQj1w68ugjOyAxTbykSVzgHKWJWzK1TUlapP17snVM4sIpjv3Zlj-ErgmeE0yyu828AW3knGLKQoZynp6gKWEZiXlC2ekxJukEXXi_wRjnSYLP0YTlAcBpOkUPyzaSVeWgkr2xbWTLP98G-k-rfWTaSNmmG_p9WtZRJ0OhttX2Ep2VsvZwdXhn6OPp8X31Eq_fnl9Xy3WsEpz0MS0A64KneQaF5KAIl1mRQgEL4IDLTC-IIoWiLNM0UxiD1LkiimrNJaecshm6Hed2zn4N4HvRGK-grmULdvCChjsxzSnjAWUjqpz13kEpOmca6baCYLFTJzZir07s1IlRXei6OSwYilA99vy6CsD9CEA489uAE14ZaFWY5ED1Qlvz74IfRwGBLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841027238</pqid></control><display><type>article</type><title>An aggregation of aggregation methods in computational pathology</title><source>Elsevier ScienceDirect Journals</source><creator>Bilal, Mohsin ; Jewsbury, Robert ; Wang, Ruoyu ; AlGhamdi, Hammam M. ; Asif, Amina ; Eastwood, Mark ; Rajpoot, Nasir</creator><creatorcontrib>Bilal, Mohsin ; Jewsbury, Robert ; Wang, Ruoyu ; AlGhamdi, Hammam M. ; Asif, Amina ; Eastwood, Mark ; Rajpoot, Nasir</creatorcontrib><description>•We provide a comprehensive review of a range of aggregation methods and their role in the predictive modelling of multi-gigapixel whole-slide images (WSIs).•We categorize aggregation methods according to the context and representation of the data, features of computational modules and digital pathology applications.•As a case study, we explore different aggregation approaches for the task of Human papillomavirus (HPV) infection status prediction in head and neck cancers in an attempt to perform a fair comparative evaluation.•Our analysis resulted in merits of the various approaches, identifying several objectives, challenges and desirable attributes of aggregation methods, recommendations and possible future directions. Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods with a view to help guide future research in the area of computational pathology (CPath). We propose a general CPath workflow with three pathways that consider multiple levels and types of data and the nature of computation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and representation of the data, features of computational modules and CPath use cases. We compare and contrast different methods based on the principle of multiple instance learning, perhaps the most commonly used aggregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, some recommendations and possible future directions. [Display omitted]</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2023.102885</identifier><identifier>PMID: 37423055</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aggregation of predictions ; Computational pathology ; Machine learning ; Whole slide image analysis</subject><ispartof>Medical image analysis, 2023-08, Vol.88, p.102885-102885, Article 102885</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-2be0db8576eba8ec18a6b5ebe9e8e0f6d91c1bc236d26c00ead7c1c2dd8a82823</citedby><cites>FETCH-LOGICAL-c404t-2be0db8576eba8ec18a6b5ebe9e8e0f6d91c1bc236d26c00ead7c1c2dd8a82823</cites><orcidid>0000-0003-0495-8438 ; 0000-0003-3699-613X ; 0000-0001-8632-2729 ; 0000-0002-4706-1308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841523001457$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37423055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilal, Mohsin</creatorcontrib><creatorcontrib>Jewsbury, Robert</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>AlGhamdi, Hammam M.</creatorcontrib><creatorcontrib>Asif, Amina</creatorcontrib><creatorcontrib>Eastwood, Mark</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><title>An aggregation of aggregation methods in computational pathology</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•We provide a comprehensive review of a range of aggregation methods and their role in the predictive modelling of multi-gigapixel whole-slide images (WSIs).•We categorize aggregation methods according to the context and representation of the data, features of computational modules and digital pathology applications.•As a case study, we explore different aggregation approaches for the task of Human papillomavirus (HPV) infection status prediction in head and neck cancers in an attempt to perform a fair comparative evaluation.•Our analysis resulted in merits of the various approaches, identifying several objectives, challenges and desirable attributes of aggregation methods, recommendations and possible future directions. Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods with a view to help guide future research in the area of computational pathology (CPath). We propose a general CPath workflow with three pathways that consider multiple levels and types of data and the nature of computation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and representation of the data, features of computational modules and CPath use cases. We compare and contrast different methods based on the principle of multiple instance learning, perhaps the most commonly used aggregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, some recommendations and possible future directions. [Display omitted]</description><subject>Aggregation of predictions</subject><subject>Computational pathology</subject><subject>Machine learning</subject><subject>Whole slide image analysis</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAMgCMEYmPwC5BQj1w68ugjOyAxTbykSVzgHKWJWzK1TUlapP17snVM4sIpjv3Zlj-ErgmeE0yyu828AW3knGLKQoZynp6gKWEZiXlC2ekxJukEXXi_wRjnSYLP0YTlAcBpOkUPyzaSVeWgkr2xbWTLP98G-k-rfWTaSNmmG_p9WtZRJ0OhttX2Ep2VsvZwdXhn6OPp8X31Eq_fnl9Xy3WsEpz0MS0A64KneQaF5KAIl1mRQgEL4IDLTC-IIoWiLNM0UxiD1LkiimrNJaecshm6Hed2zn4N4HvRGK-grmULdvCChjsxzSnjAWUjqpz13kEpOmca6baCYLFTJzZir07s1IlRXei6OSwYilA99vy6CsD9CEA489uAE14ZaFWY5ED1Qlvz74IfRwGBLg</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Bilal, Mohsin</creator><creator>Jewsbury, Robert</creator><creator>Wang, Ruoyu</creator><creator>AlGhamdi, Hammam M.</creator><creator>Asif, Amina</creator><creator>Eastwood, Mark</creator><creator>Rajpoot, Nasir</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0495-8438</orcidid><orcidid>https://orcid.org/0000-0003-3699-613X</orcidid><orcidid>https://orcid.org/0000-0001-8632-2729</orcidid><orcidid>https://orcid.org/0000-0002-4706-1308</orcidid></search><sort><creationdate>202308</creationdate><title>An aggregation of aggregation methods in computational pathology</title><author>Bilal, Mohsin ; Jewsbury, Robert ; Wang, Ruoyu ; AlGhamdi, Hammam M. ; Asif, Amina ; Eastwood, Mark ; Rajpoot, Nasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2be0db8576eba8ec18a6b5ebe9e8e0f6d91c1bc236d26c00ead7c1c2dd8a82823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregation of predictions</topic><topic>Computational pathology</topic><topic>Machine learning</topic><topic>Whole slide image analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Mohsin</creatorcontrib><creatorcontrib>Jewsbury, Robert</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>AlGhamdi, Hammam M.</creatorcontrib><creatorcontrib>Asif, Amina</creatorcontrib><creatorcontrib>Eastwood, Mark</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Mohsin</au><au>Jewsbury, Robert</au><au>Wang, Ruoyu</au><au>AlGhamdi, Hammam M.</au><au>Asif, Amina</au><au>Eastwood, Mark</au><au>Rajpoot, Nasir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An aggregation of aggregation methods in computational pathology</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2023-08</date><risdate>2023</risdate><volume>88</volume><spage>102885</spage><epage>102885</epage><pages>102885-102885</pages><artnum>102885</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•We provide a comprehensive review of a range of aggregation methods and their role in the predictive modelling of multi-gigapixel whole-slide images (WSIs).•We categorize aggregation methods according to the context and representation of the data, features of computational modules and digital pathology applications.•As a case study, we explore different aggregation approaches for the task of Human papillomavirus (HPV) infection status prediction in head and neck cancers in an attempt to perform a fair comparative evaluation.•Our analysis resulted in merits of the various approaches, identifying several objectives, challenges and desirable attributes of aggregation methods, recommendations and possible future directions. Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods with a view to help guide future research in the area of computational pathology (CPath). We propose a general CPath workflow with three pathways that consider multiple levels and types of data and the nature of computation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and representation of the data, features of computational modules and CPath use cases. We compare and contrast different methods based on the principle of multiple instance learning, perhaps the most commonly used aggregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, some recommendations and possible future directions. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37423055</pmid><doi>10.1016/j.media.2023.102885</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0495-8438</orcidid><orcidid>https://orcid.org/0000-0003-3699-613X</orcidid><orcidid>https://orcid.org/0000-0001-8632-2729</orcidid><orcidid>https://orcid.org/0000-0002-4706-1308</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2023-08, Vol.88, p.102885-102885, Article 102885
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2841027238
source Elsevier ScienceDirect Journals
subjects Aggregation of predictions
Computational pathology
Machine learning
Whole slide image analysis
title An aggregation of aggregation methods in computational pathology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20aggregation%20of%20aggregation%20methods%20in%20computational%20pathology&rft.jtitle=Medical%20image%20analysis&rft.au=Bilal,%20Mohsin&rft.date=2023-08&rft.volume=88&rft.spage=102885&rft.epage=102885&rft.pages=102885-102885&rft.artnum=102885&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2023.102885&rft_dat=%3Cproquest_cross%3E2841027238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841027238&rft_id=info:pmid/37423055&rft_els_id=S1361841523001457&rfr_iscdi=true