Performance of an Artificial Intelligence Model for Recognition and Quantitation of Histologic Features of Eosinophilic Esophagitis on Biopsy Samples

We have developed an artificial intelligence (AI)–based digital pathology model for the evaluation of histologic features related to eosinophilic esophagitis (EoE). In this study, we evaluated the performance of our AI model in a cohort of pediatric and adult patients for histologic features include...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern pathology 2023-10, Vol.36 (10), p.100285-100285, Article 100285
Hauptverfasser: Ricaurte Archila, Luisa, Smith, Lindsey, Sihvo, Hanna-Kaisa, Koponen, Ville, Jenkins, Sarah M., O’Sullivan, Donnchadh M., Cardenas Fernandez, Maria Camila, Wang, Yaohong, Sivasubramaniam, Priyadharshini, Patil, Ameya, Hopson, Puanani E., Absah, Imad, Ravi, Karthik, Mounajjed, Taofic, Dellon, Evan S., Bredenoord, Albert J., Pai, Rish, Hartley, Christopher P., Graham, Rondell P., Moreira, Roger K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100285
container_issue 10
container_start_page 100285
container_title Modern pathology
container_volume 36
creator Ricaurte Archila, Luisa
Smith, Lindsey
Sihvo, Hanna-Kaisa
Koponen, Ville
Jenkins, Sarah M.
O’Sullivan, Donnchadh M.
Cardenas Fernandez, Maria Camila
Wang, Yaohong
Sivasubramaniam, Priyadharshini
Patil, Ameya
Hopson, Puanani E.
Absah, Imad
Ravi, Karthik
Mounajjed, Taofic
Dellon, Evan S.
Bredenoord, Albert J.
Pai, Rish
Hartley, Christopher P.
Graham, Rondell P.
Moreira, Roger K.
description We have developed an artificial intelligence (AI)–based digital pathology model for the evaluation of histologic features related to eosinophilic esophagitis (EoE). In this study, we evaluated the performance of our AI model in a cohort of pediatric and adult patients for histologic features included in the Eosinophilic Esophagitis Histologic Scoring System (EoEHSS). We collected a total of 203 esophageal biopsy samples from patients with mucosal eosinophilia of any degree (91 adult and 112 pediatric patients) and 10 normal controls from a prospectively maintained database. All cases were assessed by a specialized gastrointestinal (GI) pathologist for features in the EoEHSS at the time of original diagnosis and rescored by a central GI pathologist (R.K.M.). We subsequently analyzed whole-slide image digital slides using a supervised AI model operating in a cloud-based, deep learning AI platform (Aiforia Technologies) for peak eosinophil count (PEC) and several histopathologic features in the EoEHSS. The correlation and interobserver agreement between the AI model and pathologists (Pearson correlation coefficient [rs] = 0.89 and intraclass correlation coefficient [ICC] = 0.87 vs original pathologist; rs = 0.91 and ICC = 0.83 vs central pathologist) were similar to the correlation and interobserver agreement between pathologists for PEC (rs = 0.88 and ICC = 0.91) and broadly similar to those for most other histologic features in the EoEHSS. The AI model also accurately identified PEC of >15 eosinophils/high-power field by the original pathologist (area under the curve [AUC] = 0.98) and central pathologist (AUC = 0.98) and had similar AUCs for the presence of EoE-related endoscopic features to pathologists’ assessment. Average eosinophils per epithelial unit area had similar performance compared to AI high-power field–based analysis. Our newly developed AI model can accurately identify, quantify, and score several of the main histopathologic features in the EoE spectrum, with agreement regarding EoEHSS scoring which was similar to that seen among GI pathologists.
doi_str_mv 10.1016/j.modpat.2023.100285
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841025444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893395223001904</els_id><sourcerecordid>2841025444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bd76c6c2c43eb24997bccaff713a515a05cd04208e51ac86c54d53a133b5c28f3</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtRCIDoU_QMhLNhn8nGQ2SKWa0kpFvNeWY98Md5TEwXYq9UP4XxxSWLLy1XldXR9CXnK25Yzv3py2Q_CTzVvBhCwQE41-RDZcS1Yt82OyYc1eVnKvxRl5ltKJMa50I56SM1mrWjEmN-TXJ4hdiIMdHdDQUTvSi5ixQ4e2pzdjhr7HIyzsh-Chp0VMv4ALxxEzhrEYPP082zFjtn-AEnKNKYc-HNHRK7B5jpAW-BASjmH6gX0hDqlM9lhCCjfSdximdE-_2mHqIT0nTzrbJ3jx8J6T71eHb5fX1e3H9zeXF7eVU6zJVevrnds54ZSEVqj9vm6ds11Xc2k115Zp55kSrAHNrWt2TiuvpeVSttqJppPn5PWaO8Xwc4aUzYDJlZPtCGFORjSKM6GVUkWqVqmLIaUInZkiDjbeG87MUog5mbUQsxRi1kKK7dXDhrkdwP8z_W2gCN6uAih33iFEkxwu_-0xgsvGB_z_ht-rOaEP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841025444</pqid></control><display><type>article</type><title>Performance of an Artificial Intelligence Model for Recognition and Quantitation of Histologic Features of Eosinophilic Esophagitis on Biopsy Samples</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ricaurte Archila, Luisa ; Smith, Lindsey ; Sihvo, Hanna-Kaisa ; Koponen, Ville ; Jenkins, Sarah M. ; O’Sullivan, Donnchadh M. ; Cardenas Fernandez, Maria Camila ; Wang, Yaohong ; Sivasubramaniam, Priyadharshini ; Patil, Ameya ; Hopson, Puanani E. ; Absah, Imad ; Ravi, Karthik ; Mounajjed, Taofic ; Dellon, Evan S. ; Bredenoord, Albert J. ; Pai, Rish ; Hartley, Christopher P. ; Graham, Rondell P. ; Moreira, Roger K.</creator><creatorcontrib>Ricaurte Archila, Luisa ; Smith, Lindsey ; Sihvo, Hanna-Kaisa ; Koponen, Ville ; Jenkins, Sarah M. ; O’Sullivan, Donnchadh M. ; Cardenas Fernandez, Maria Camila ; Wang, Yaohong ; Sivasubramaniam, Priyadharshini ; Patil, Ameya ; Hopson, Puanani E. ; Absah, Imad ; Ravi, Karthik ; Mounajjed, Taofic ; Dellon, Evan S. ; Bredenoord, Albert J. ; Pai, Rish ; Hartley, Christopher P. ; Graham, Rondell P. ; Moreira, Roger K.</creatorcontrib><description>We have developed an artificial intelligence (AI)–based digital pathology model for the evaluation of histologic features related to eosinophilic esophagitis (EoE). In this study, we evaluated the performance of our AI model in a cohort of pediatric and adult patients for histologic features included in the Eosinophilic Esophagitis Histologic Scoring System (EoEHSS). We collected a total of 203 esophageal biopsy samples from patients with mucosal eosinophilia of any degree (91 adult and 112 pediatric patients) and 10 normal controls from a prospectively maintained database. All cases were assessed by a specialized gastrointestinal (GI) pathologist for features in the EoEHSS at the time of original diagnosis and rescored by a central GI pathologist (R.K.M.). We subsequently analyzed whole-slide image digital slides using a supervised AI model operating in a cloud-based, deep learning AI platform (Aiforia Technologies) for peak eosinophil count (PEC) and several histopathologic features in the EoEHSS. The correlation and interobserver agreement between the AI model and pathologists (Pearson correlation coefficient [rs] = 0.89 and intraclass correlation coefficient [ICC] = 0.87 vs original pathologist; rs = 0.91 and ICC = 0.83 vs central pathologist) were similar to the correlation and interobserver agreement between pathologists for PEC (rs = 0.88 and ICC = 0.91) and broadly similar to those for most other histologic features in the EoEHSS. The AI model also accurately identified PEC of &gt;15 eosinophils/high-power field by the original pathologist (area under the curve [AUC] = 0.98) and central pathologist (AUC = 0.98) and had similar AUCs for the presence of EoE-related endoscopic features to pathologists’ assessment. Average eosinophils per epithelial unit area had similar performance compared to AI high-power field–based analysis. Our newly developed AI model can accurately identify, quantify, and score several of the main histopathologic features in the EoE spectrum, with agreement regarding EoEHSS scoring which was similar to that seen among GI pathologists.</description><identifier>ISSN: 0893-3952</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1016/j.modpat.2023.100285</identifier><identifier>PMID: 37474003</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>artificial intelligence ; deep learning ; digital pathology ; EoE ; eosinophilic esophagitis ; eosinophils</subject><ispartof>Modern pathology, 2023-10, Vol.36 (10), p.100285-100285, Article 100285</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bd76c6c2c43eb24997bccaff713a515a05cd04208e51ac86c54d53a133b5c28f3</citedby><cites>FETCH-LOGICAL-c408t-bd76c6c2c43eb24997bccaff713a515a05cd04208e51ac86c54d53a133b5c28f3</cites><orcidid>0000-0001-6087-8366 ; 0000-0003-0707-5219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37474003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ricaurte Archila, Luisa</creatorcontrib><creatorcontrib>Smith, Lindsey</creatorcontrib><creatorcontrib>Sihvo, Hanna-Kaisa</creatorcontrib><creatorcontrib>Koponen, Ville</creatorcontrib><creatorcontrib>Jenkins, Sarah M.</creatorcontrib><creatorcontrib>O’Sullivan, Donnchadh M.</creatorcontrib><creatorcontrib>Cardenas Fernandez, Maria Camila</creatorcontrib><creatorcontrib>Wang, Yaohong</creatorcontrib><creatorcontrib>Sivasubramaniam, Priyadharshini</creatorcontrib><creatorcontrib>Patil, Ameya</creatorcontrib><creatorcontrib>Hopson, Puanani E.</creatorcontrib><creatorcontrib>Absah, Imad</creatorcontrib><creatorcontrib>Ravi, Karthik</creatorcontrib><creatorcontrib>Mounajjed, Taofic</creatorcontrib><creatorcontrib>Dellon, Evan S.</creatorcontrib><creatorcontrib>Bredenoord, Albert J.</creatorcontrib><creatorcontrib>Pai, Rish</creatorcontrib><creatorcontrib>Hartley, Christopher P.</creatorcontrib><creatorcontrib>Graham, Rondell P.</creatorcontrib><creatorcontrib>Moreira, Roger K.</creatorcontrib><title>Performance of an Artificial Intelligence Model for Recognition and Quantitation of Histologic Features of Eosinophilic Esophagitis on Biopsy Samples</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><description>We have developed an artificial intelligence (AI)–based digital pathology model for the evaluation of histologic features related to eosinophilic esophagitis (EoE). In this study, we evaluated the performance of our AI model in a cohort of pediatric and adult patients for histologic features included in the Eosinophilic Esophagitis Histologic Scoring System (EoEHSS). We collected a total of 203 esophageal biopsy samples from patients with mucosal eosinophilia of any degree (91 adult and 112 pediatric patients) and 10 normal controls from a prospectively maintained database. All cases were assessed by a specialized gastrointestinal (GI) pathologist for features in the EoEHSS at the time of original diagnosis and rescored by a central GI pathologist (R.K.M.). We subsequently analyzed whole-slide image digital slides using a supervised AI model operating in a cloud-based, deep learning AI platform (Aiforia Technologies) for peak eosinophil count (PEC) and several histopathologic features in the EoEHSS. The correlation and interobserver agreement between the AI model and pathologists (Pearson correlation coefficient [rs] = 0.89 and intraclass correlation coefficient [ICC] = 0.87 vs original pathologist; rs = 0.91 and ICC = 0.83 vs central pathologist) were similar to the correlation and interobserver agreement between pathologists for PEC (rs = 0.88 and ICC = 0.91) and broadly similar to those for most other histologic features in the EoEHSS. The AI model also accurately identified PEC of &gt;15 eosinophils/high-power field by the original pathologist (area under the curve [AUC] = 0.98) and central pathologist (AUC = 0.98) and had similar AUCs for the presence of EoE-related endoscopic features to pathologists’ assessment. Average eosinophils per epithelial unit area had similar performance compared to AI high-power field–based analysis. Our newly developed AI model can accurately identify, quantify, and score several of the main histopathologic features in the EoE spectrum, with agreement regarding EoEHSS scoring which was similar to that seen among GI pathologists.</description><subject>artificial intelligence</subject><subject>deep learning</subject><subject>digital pathology</subject><subject>EoE</subject><subject>eosinophilic esophagitis</subject><subject>eosinophils</subject><issn>0893-3952</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu1DAUtRCIDoU_QMhLNhn8nGQ2SKWa0kpFvNeWY98Md5TEwXYq9UP4XxxSWLLy1XldXR9CXnK25Yzv3py2Q_CTzVvBhCwQE41-RDZcS1Yt82OyYc1eVnKvxRl5ltKJMa50I56SM1mrWjEmN-TXJ4hdiIMdHdDQUTvSi5ixQ4e2pzdjhr7HIyzsh-Chp0VMv4ALxxEzhrEYPP082zFjtn-AEnKNKYc-HNHRK7B5jpAW-BASjmH6gX0hDqlM9lhCCjfSdximdE-_2mHqIT0nTzrbJ3jx8J6T71eHb5fX1e3H9zeXF7eVU6zJVevrnds54ZSEVqj9vm6ds11Xc2k115Zp55kSrAHNrWt2TiuvpeVSttqJppPn5PWaO8Xwc4aUzYDJlZPtCGFORjSKM6GVUkWqVqmLIaUInZkiDjbeG87MUog5mbUQsxRi1kKK7dXDhrkdwP8z_W2gCN6uAih33iFEkxwu_-0xgsvGB_z_ht-rOaEP</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ricaurte Archila, Luisa</creator><creator>Smith, Lindsey</creator><creator>Sihvo, Hanna-Kaisa</creator><creator>Koponen, Ville</creator><creator>Jenkins, Sarah M.</creator><creator>O’Sullivan, Donnchadh M.</creator><creator>Cardenas Fernandez, Maria Camila</creator><creator>Wang, Yaohong</creator><creator>Sivasubramaniam, Priyadharshini</creator><creator>Patil, Ameya</creator><creator>Hopson, Puanani E.</creator><creator>Absah, Imad</creator><creator>Ravi, Karthik</creator><creator>Mounajjed, Taofic</creator><creator>Dellon, Evan S.</creator><creator>Bredenoord, Albert J.</creator><creator>Pai, Rish</creator><creator>Hartley, Christopher P.</creator><creator>Graham, Rondell P.</creator><creator>Moreira, Roger K.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6087-8366</orcidid><orcidid>https://orcid.org/0000-0003-0707-5219</orcidid></search><sort><creationdate>20231001</creationdate><title>Performance of an Artificial Intelligence Model for Recognition and Quantitation of Histologic Features of Eosinophilic Esophagitis on Biopsy Samples</title><author>Ricaurte Archila, Luisa ; Smith, Lindsey ; Sihvo, Hanna-Kaisa ; Koponen, Ville ; Jenkins, Sarah M. ; O’Sullivan, Donnchadh M. ; Cardenas Fernandez, Maria Camila ; Wang, Yaohong ; Sivasubramaniam, Priyadharshini ; Patil, Ameya ; Hopson, Puanani E. ; Absah, Imad ; Ravi, Karthik ; Mounajjed, Taofic ; Dellon, Evan S. ; Bredenoord, Albert J. ; Pai, Rish ; Hartley, Christopher P. ; Graham, Rondell P. ; Moreira, Roger K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bd76c6c2c43eb24997bccaff713a515a05cd04208e51ac86c54d53a133b5c28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>artificial intelligence</topic><topic>deep learning</topic><topic>digital pathology</topic><topic>EoE</topic><topic>eosinophilic esophagitis</topic><topic>eosinophils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ricaurte Archila, Luisa</creatorcontrib><creatorcontrib>Smith, Lindsey</creatorcontrib><creatorcontrib>Sihvo, Hanna-Kaisa</creatorcontrib><creatorcontrib>Koponen, Ville</creatorcontrib><creatorcontrib>Jenkins, Sarah M.</creatorcontrib><creatorcontrib>O’Sullivan, Donnchadh M.</creatorcontrib><creatorcontrib>Cardenas Fernandez, Maria Camila</creatorcontrib><creatorcontrib>Wang, Yaohong</creatorcontrib><creatorcontrib>Sivasubramaniam, Priyadharshini</creatorcontrib><creatorcontrib>Patil, Ameya</creatorcontrib><creatorcontrib>Hopson, Puanani E.</creatorcontrib><creatorcontrib>Absah, Imad</creatorcontrib><creatorcontrib>Ravi, Karthik</creatorcontrib><creatorcontrib>Mounajjed, Taofic</creatorcontrib><creatorcontrib>Dellon, Evan S.</creatorcontrib><creatorcontrib>Bredenoord, Albert J.</creatorcontrib><creatorcontrib>Pai, Rish</creatorcontrib><creatorcontrib>Hartley, Christopher P.</creatorcontrib><creatorcontrib>Graham, Rondell P.</creatorcontrib><creatorcontrib>Moreira, Roger K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricaurte Archila, Luisa</au><au>Smith, Lindsey</au><au>Sihvo, Hanna-Kaisa</au><au>Koponen, Ville</au><au>Jenkins, Sarah M.</au><au>O’Sullivan, Donnchadh M.</au><au>Cardenas Fernandez, Maria Camila</au><au>Wang, Yaohong</au><au>Sivasubramaniam, Priyadharshini</au><au>Patil, Ameya</au><au>Hopson, Puanani E.</au><au>Absah, Imad</au><au>Ravi, Karthik</au><au>Mounajjed, Taofic</au><au>Dellon, Evan S.</au><au>Bredenoord, Albert J.</au><au>Pai, Rish</au><au>Hartley, Christopher P.</au><au>Graham, Rondell P.</au><au>Moreira, Roger K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of an Artificial Intelligence Model for Recognition and Quantitation of Histologic Features of Eosinophilic Esophagitis on Biopsy Samples</atitle><jtitle>Modern pathology</jtitle><addtitle>Mod Pathol</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>36</volume><issue>10</issue><spage>100285</spage><epage>100285</epage><pages>100285-100285</pages><artnum>100285</artnum><issn>0893-3952</issn><eissn>1530-0285</eissn><abstract>We have developed an artificial intelligence (AI)–based digital pathology model for the evaluation of histologic features related to eosinophilic esophagitis (EoE). In this study, we evaluated the performance of our AI model in a cohort of pediatric and adult patients for histologic features included in the Eosinophilic Esophagitis Histologic Scoring System (EoEHSS). We collected a total of 203 esophageal biopsy samples from patients with mucosal eosinophilia of any degree (91 adult and 112 pediatric patients) and 10 normal controls from a prospectively maintained database. All cases were assessed by a specialized gastrointestinal (GI) pathologist for features in the EoEHSS at the time of original diagnosis and rescored by a central GI pathologist (R.K.M.). We subsequently analyzed whole-slide image digital slides using a supervised AI model operating in a cloud-based, deep learning AI platform (Aiforia Technologies) for peak eosinophil count (PEC) and several histopathologic features in the EoEHSS. The correlation and interobserver agreement between the AI model and pathologists (Pearson correlation coefficient [rs] = 0.89 and intraclass correlation coefficient [ICC] = 0.87 vs original pathologist; rs = 0.91 and ICC = 0.83 vs central pathologist) were similar to the correlation and interobserver agreement between pathologists for PEC (rs = 0.88 and ICC = 0.91) and broadly similar to those for most other histologic features in the EoEHSS. The AI model also accurately identified PEC of &gt;15 eosinophils/high-power field by the original pathologist (area under the curve [AUC] = 0.98) and central pathologist (AUC = 0.98) and had similar AUCs for the presence of EoE-related endoscopic features to pathologists’ assessment. Average eosinophils per epithelial unit area had similar performance compared to AI high-power field–based analysis. Our newly developed AI model can accurately identify, quantify, and score several of the main histopathologic features in the EoE spectrum, with agreement regarding EoEHSS scoring which was similar to that seen among GI pathologists.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37474003</pmid><doi>10.1016/j.modpat.2023.100285</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6087-8366</orcidid><orcidid>https://orcid.org/0000-0003-0707-5219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-3952
ispartof Modern pathology, 2023-10, Vol.36 (10), p.100285-100285, Article 100285
issn 0893-3952
1530-0285
language eng
recordid cdi_proquest_miscellaneous_2841025444
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects artificial intelligence
deep learning
digital pathology
EoE
eosinophilic esophagitis
eosinophils
title Performance of an Artificial Intelligence Model for Recognition and Quantitation of Histologic Features of Eosinophilic Esophagitis on Biopsy Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20an%20Artificial%20Intelligence%20Model%20for%20Recognition%20and%20Quantitation%20of%20Histologic%20Features%20of%20Eosinophilic%20Esophagitis%20on%20Biopsy%20Samples&rft.jtitle=Modern%20pathology&rft.au=Ricaurte%20Archila,%20Luisa&rft.date=2023-10-01&rft.volume=36&rft.issue=10&rft.spage=100285&rft.epage=100285&rft.pages=100285-100285&rft.artnum=100285&rft.issn=0893-3952&rft.eissn=1530-0285&rft_id=info:doi/10.1016/j.modpat.2023.100285&rft_dat=%3Cproquest_cross%3E2841025444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841025444&rft_id=info:pmid/37474003&rft_els_id=S0893395223001904&rfr_iscdi=true