Prokaryotic expression and characterization of artificial self-sufficient CYP120A monooxygenases
Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the O -functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the c...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2023-09, Vol.107 (18), p.5727-5737 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5737 |
---|---|
container_issue | 18 |
container_start_page | 5727 |
container_title | Applied microbiology and biotechnology |
container_volume | 107 |
creator | Ye, Ru-Yi Song, Juan Zhang, Zhi-Jun Yu, Hui-Lei |
description | Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the
O
-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in
E. coli
by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the
C
-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from
Bacillus megaterium
P450
BM3
(CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family.
Key Points
•
Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins.
•
The feasibility of three P450 reductase domains to CYP120As was evaluated.
•
Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.
Graphical Abstract |
doi_str_mv | 10.1007/s00253-023-12678-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841023075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A761559573</galeid><sourcerecordid>A761559573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-e1dc42bd8e721d04f66a85b20a8452a9f0bcd7545fc4e7ec245f682f644c42a13</originalsourceid><addsrcrecordid>eNqFkktvEzEUhS0EomnhD7BAI7Ghiyl-e7KMIh6VKlHxWLAyjuc6uMzYwfZICb8ehxSqIATywvb1d450ri9CTwi-IBirFxljKliLKWsJlaprd_fQjHBGWywJv49mmCjRKjHvTtBpzjcYE9pJ-RCdMMWVknMxQ5-vU_xq0i4WbxvYbhLk7GNoTOgb-8UkYwsk_92UfTG6xqTinbfeDE2GwbV5cvsrhNIsP10TihfNGEOM290agsmQH6EHzgwZHt_uZ-jjq5cflm_aq7evL5eLq9YKzEsLpLecrvoOFCU95k5K04kVxabjgpq5wyvbK8GFsxwUWFpPsqNOcl51hrAz9Pzgu0nx2wS56NFnC8NgAsQpa0YEI53Ec_VflHac1KZiJSr67A_0Jk4p1CCVqoaMMqHuqLUZQPvgYqmN25vqhZJEiHmFKnXxF6quHkZvYwDna_1IcH4kqEyBbVmbKWd9-f7dMUsPrE0x5wROb5If68dqgvV-WvRhWnQNpn9Oi95V0dPbdNNqhP635Nd4VIAdgFyfwhrSXfx_2P4A3UfIhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853132357</pqid></control><display><type>article</type><title>Prokaryotic expression and characterization of artificial self-sufficient CYP120A monooxygenases</title><source>Springer Nature - Complete Springer Journals</source><creator>Ye, Ru-Yi ; Song, Juan ; Zhang, Zhi-Jun ; Yu, Hui-Lei</creator><creatorcontrib>Ye, Ru-Yi ; Song, Juan ; Zhang, Zhi-Jun ; Yu, Hui-Lei</creatorcontrib><description>Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the
O
-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in
E. coli
by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the
C
-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from
Bacillus megaterium
P450
BM3
(CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family.
Key Points
•
Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins.
•
The feasibility of three P450 reductase domains to CYP120As was evaluated.
•
Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.
Graphical Abstract</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-023-12678-y</identifier><identifier>PMID: 37477695</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Bacillus megaterium ; Bioactive compounds ; Biodegradation ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Cytochrome ; cytochrome P-450 ; Cytochrome P450 ; Cytochromes P450 ; E coli ; Electron transfer ; Escherichia coli ; Flavin-adenine dinucleotide ; FMN reductase ; Fusion protein ; Gene expression ; Genetic aspects ; Hydroxylation ; Identification and classification ; Life Sciences ; Membrane proteins ; Membranes ; Microbial Genetics and Genomics ; Microbiology ; moieties ; NADPH-ferrihemoprotein reductase ; Oxidases ; oxidoreductases ; Proteins ; Reductases ; Regioselectivity ; Retinoic acid ; Substrates</subject><ispartof>Applied microbiology and biotechnology, 2023-09, Vol.107 (18), p.5727-5737</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c504t-e1dc42bd8e721d04f66a85b20a8452a9f0bcd7545fc4e7ec245f682f644c42a13</cites><orcidid>0000-0002-1925-3679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-023-12678-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-023-12678-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37477695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Ru-Yi</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Zhang, Zhi-Jun</creatorcontrib><creatorcontrib>Yu, Hui-Lei</creatorcontrib><title>Prokaryotic expression and characterization of artificial self-sufficient CYP120A monooxygenases</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the
O
-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in
E. coli
by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the
C
-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from
Bacillus megaterium
P450
BM3
(CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family.
Key Points
•
Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins.
•
The feasibility of three P450 reductase domains to CYP120As was evaluated.
•
Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.
Graphical Abstract</description><subject>Analysis</subject><subject>Bacillus megaterium</subject><subject>Bioactive compounds</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Cytochrome</subject><subject>cytochrome P-450</subject><subject>Cytochrome P450</subject><subject>Cytochromes P450</subject><subject>E coli</subject><subject>Electron transfer</subject><subject>Escherichia coli</subject><subject>Flavin-adenine dinucleotide</subject><subject>FMN reductase</subject><subject>Fusion protein</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Hydroxylation</subject><subject>Identification and classification</subject><subject>Life Sciences</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>moieties</subject><subject>NADPH-ferrihemoprotein reductase</subject><subject>Oxidases</subject><subject>oxidoreductases</subject><subject>Proteins</subject><subject>Reductases</subject><subject>Regioselectivity</subject><subject>Retinoic acid</subject><subject>Substrates</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkktvEzEUhS0EomnhD7BAI7Ghiyl-e7KMIh6VKlHxWLAyjuc6uMzYwfZICb8ehxSqIATywvb1d450ri9CTwi-IBirFxljKliLKWsJlaprd_fQjHBGWywJv49mmCjRKjHvTtBpzjcYE9pJ-RCdMMWVknMxQ5-vU_xq0i4WbxvYbhLk7GNoTOgb-8UkYwsk_92UfTG6xqTinbfeDE2GwbV5cvsrhNIsP10TihfNGEOM290agsmQH6EHzgwZHt_uZ-jjq5cflm_aq7evL5eLq9YKzEsLpLecrvoOFCU95k5K04kVxabjgpq5wyvbK8GFsxwUWFpPsqNOcl51hrAz9Pzgu0nx2wS56NFnC8NgAsQpa0YEI53Ec_VflHac1KZiJSr67A_0Jk4p1CCVqoaMMqHuqLUZQPvgYqmN25vqhZJEiHmFKnXxF6quHkZvYwDna_1IcH4kqEyBbVmbKWd9-f7dMUsPrE0x5wROb5If68dqgvV-WvRhWnQNpn9Oi95V0dPbdNNqhP635Nd4VIAdgFyfwhrSXfx_2P4A3UfIhQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Ye, Ru-Yi</creator><creator>Song, Juan</creator><creator>Zhang, Zhi-Jun</creator><creator>Yu, Hui-Lei</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1925-3679</orcidid></search><sort><creationdate>20230901</creationdate><title>Prokaryotic expression and characterization of artificial self-sufficient CYP120A monooxygenases</title><author>Ye, Ru-Yi ; Song, Juan ; Zhang, Zhi-Jun ; Yu, Hui-Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-e1dc42bd8e721d04f66a85b20a8452a9f0bcd7545fc4e7ec245f682f644c42a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bacillus megaterium</topic><topic>Bioactive compounds</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Cytochrome</topic><topic>cytochrome P-450</topic><topic>Cytochrome P450</topic><topic>Cytochromes P450</topic><topic>E coli</topic><topic>Electron transfer</topic><topic>Escherichia coli</topic><topic>Flavin-adenine dinucleotide</topic><topic>FMN reductase</topic><topic>Fusion protein</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Hydroxylation</topic><topic>Identification and classification</topic><topic>Life Sciences</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>moieties</topic><topic>NADPH-ferrihemoprotein reductase</topic><topic>Oxidases</topic><topic>oxidoreductases</topic><topic>Proteins</topic><topic>Reductases</topic><topic>Regioselectivity</topic><topic>Retinoic acid</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Ru-Yi</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Zhang, Zhi-Jun</creatorcontrib><creatorcontrib>Yu, Hui-Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Ru-Yi</au><au>Song, Juan</au><au>Zhang, Zhi-Jun</au><au>Yu, Hui-Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prokaryotic expression and characterization of artificial self-sufficient CYP120A monooxygenases</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>107</volume><issue>18</issue><spage>5727</spage><epage>5737</epage><pages>5727-5737</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the
O
-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in
E. coli
by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the
C
-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from
Bacillus megaterium
P450
BM3
(CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family.
Key Points
•
Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins.
•
The feasibility of three P450 reductase domains to CYP120As was evaluated.
•
Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37477695</pmid><doi>10.1007/s00253-023-12678-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1925-3679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2023-09, Vol.107 (18), p.5727-5737 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2841023075 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Bacillus megaterium Bioactive compounds Biodegradation Biomedical and Life Sciences Biotechnologically Relevant Enzymes and Proteins Biotechnology Cytochrome cytochrome P-450 Cytochrome P450 Cytochromes P450 E coli Electron transfer Escherichia coli Flavin-adenine dinucleotide FMN reductase Fusion protein Gene expression Genetic aspects Hydroxylation Identification and classification Life Sciences Membrane proteins Membranes Microbial Genetics and Genomics Microbiology moieties NADPH-ferrihemoprotein reductase Oxidases oxidoreductases Proteins Reductases Regioselectivity Retinoic acid Substrates |
title | Prokaryotic expression and characterization of artificial self-sufficient CYP120A monooxygenases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prokaryotic%20expression%20and%20characterization%20of%20artificial%20self-sufficient%20CYP120A%20monooxygenases&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Ye,%20Ru-Yi&rft.date=2023-09-01&rft.volume=107&rft.issue=18&rft.spage=5727&rft.epage=5737&rft.pages=5727-5737&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-023-12678-y&rft_dat=%3Cgale_proqu%3EA761559573%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853132357&rft_id=info:pmid/37477695&rft_galeid=A761559573&rfr_iscdi=true |