Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design

Probabilistic design, such as reliability-based design and robust design, offers tools for making reliable decisions with the consideration of uncertainty associated with design variables/parameters and simulation models. Since a probabilistic optimization often involves a double-loop procedure for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical design (1990) 2004-03, Vol.126 (2), p.225-233
Hauptverfasser: Du, Xiaoping, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 2
container_start_page 225
container_title Journal of mechanical design (1990)
container_volume 126
creator Du, Xiaoping
Chen, Wei
description Probabilistic design, such as reliability-based design and robust design, offers tools for making reliable decisions with the consideration of uncertainty associated with design variables/parameters and simulation models. Since a probabilistic optimization often involves a double-loop procedure for the overall optimization and iterative probabilistic assessment, the computational demand is extremely high. In this paper, the sequential optimization and reliability assessment (SORA) is developed to improve the efficiency of probabilistic optimization. The SORA method employs a single-loop strategy with a serial of cycles of deterministic optimization and reliability assessment. In each cycle, optimization and reliability assessment are decoupled from each other; the reliability assessment is only conducted after the deterministic optimization to verify constraint feasibility under uncertainty. The key to the proposed method is to shift the boundaries of violated constraints (with low reliability) to the feasible direction based on the reliability information obtained in the previous cycle. The design is quickly improved from cycle to cycle and the computational efficiency is improved significantly. Two engineering applications, the reliability-based design for vehicle crashworthiness of side impact and the integrated reliability and robust design of a speed reducer, are presented to demonstrate the effectiveness of the SORA method.
doi_str_mv 10.1115/1.1649968
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28404085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28404085</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-cc2f6e1e764168b39ae582f9ed7921dfc72b9b9ee5403bff19aa7cd9bf1c8f583</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsHz15yUfCwNZNNdpNjqfUDKhU_bkLIZhNN2e7WZHuov97UFjzN8PLMC_MgdA5kBAD8BkZQMCkLcYAGwKnIJCFwmHbCSUZYSY_RSYyLFIJgfIA-Xu332ra91w2er3q_9D-6912LdVvjF9t4XfnG9xs8jtHGuEwofrL9V1dj1wU8dc4bvw2fQ1f9sbH3Bt_a6D_bU3TkdBPt2X4O0fvd9G3ykM3m94-T8SzTecn6zBjqCgu2LBgUosqltlxQJ21dSgq1MyWtZCWt5YzklXMgtS5NLSsHRjgu8iG62vWuQpe-ib1a-mhs0-jWduuoqGCEEcETeL0DTehiDNapVfBLHTYKiNr6U6D2_hJ7uS_V0ejGBd0aH_8PeFlyyiBxFztOJztq0a1Dm35VSTUBnv8CzGV5-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28404085</pqid></control><display><type>article</type><title>Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design</title><source>ASME Transactions Journals (Current)</source><creator>Du, Xiaoping ; Chen, Wei</creator><creatorcontrib>Du, Xiaoping ; Chen, Wei</creatorcontrib><description>Probabilistic design, such as reliability-based design and robust design, offers tools for making reliable decisions with the consideration of uncertainty associated with design variables/parameters and simulation models. Since a probabilistic optimization often involves a double-loop procedure for the overall optimization and iterative probabilistic assessment, the computational demand is extremely high. In this paper, the sequential optimization and reliability assessment (SORA) is developed to improve the efficiency of probabilistic optimization. The SORA method employs a single-loop strategy with a serial of cycles of deterministic optimization and reliability assessment. In each cycle, optimization and reliability assessment are decoupled from each other; the reliability assessment is only conducted after the deterministic optimization to verify constraint feasibility under uncertainty. The key to the proposed method is to shift the boundaries of violated constraints (with low reliability) to the feasible direction based on the reliability information obtained in the previous cycle. The design is quickly improved from cycle to cycle and the computational efficiency is improved significantly. Two engineering applications, the reliability-based design for vehicle crashworthiness of side impact and the integrated reliability and robust design of a speed reducer, are presented to demonstrate the effectiveness of the SORA method.</description><identifier>ISSN: 1050-0472</identifier><identifier>EISSN: 1528-9001</identifier><identifier>DOI: 10.1115/1.1649968</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Exact sciences and technology ; Mechanical engineering. Machine design</subject><ispartof>Journal of mechanical design (1990), 2004-03, Vol.126 (2), p.225-233</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-cc2f6e1e764168b39ae582f9ed7921dfc72b9b9ee5403bff19aa7cd9bf1c8f583</citedby><cites>FETCH-LOGICAL-a374t-cc2f6e1e764168b39ae582f9ed7921dfc72b9b9ee5403bff19aa7cd9bf1c8f583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15775241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Xiaoping</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><title>Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design</title><title>Journal of mechanical design (1990)</title><addtitle>J. Mech. Des</addtitle><description>Probabilistic design, such as reliability-based design and robust design, offers tools for making reliable decisions with the consideration of uncertainty associated with design variables/parameters and simulation models. Since a probabilistic optimization often involves a double-loop procedure for the overall optimization and iterative probabilistic assessment, the computational demand is extremely high. In this paper, the sequential optimization and reliability assessment (SORA) is developed to improve the efficiency of probabilistic optimization. The SORA method employs a single-loop strategy with a serial of cycles of deterministic optimization and reliability assessment. In each cycle, optimization and reliability assessment are decoupled from each other; the reliability assessment is only conducted after the deterministic optimization to verify constraint feasibility under uncertainty. The key to the proposed method is to shift the boundaries of violated constraints (with low reliability) to the feasible direction based on the reliability information obtained in the previous cycle. The design is quickly improved from cycle to cycle and the computational efficiency is improved significantly. Two engineering applications, the reliability-based design for vehicle crashworthiness of side impact and the integrated reliability and robust design of a speed reducer, are presented to demonstrate the effectiveness of the SORA method.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Mechanical engineering. Machine design</subject><issn>1050-0472</issn><issn>1528-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsHz15yUfCwNZNNdpNjqfUDKhU_bkLIZhNN2e7WZHuov97UFjzN8PLMC_MgdA5kBAD8BkZQMCkLcYAGwKnIJCFwmHbCSUZYSY_RSYyLFIJgfIA-Xu332ra91w2er3q_9D-6912LdVvjF9t4XfnG9xs8jtHGuEwofrL9V1dj1wU8dc4bvw2fQ1f9sbH3Bt_a6D_bU3TkdBPt2X4O0fvd9G3ykM3m94-T8SzTecn6zBjqCgu2LBgUosqltlxQJ21dSgq1MyWtZCWt5YzklXMgtS5NLSsHRjgu8iG62vWuQpe-ib1a-mhs0-jWduuoqGCEEcETeL0DTehiDNapVfBLHTYKiNr6U6D2_hJ7uS_V0ejGBd0aH_8PeFlyyiBxFztOJztq0a1Dm35VSTUBnv8CzGV5-w</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Du, Xiaoping</creator><creator>Chen, Wei</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20040301</creationdate><title>Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design</title><author>Du, Xiaoping ; Chen, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-cc2f6e1e764168b39ae582f9ed7921dfc72b9b9ee5403bff19aa7cd9bf1c8f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Mechanical engineering. Machine design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xiaoping</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of mechanical design (1990)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xiaoping</au><au>Chen, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design</atitle><jtitle>Journal of mechanical design (1990)</jtitle><stitle>J. Mech. Des</stitle><date>2004-03-01</date><risdate>2004</risdate><volume>126</volume><issue>2</issue><spage>225</spage><epage>233</epage><pages>225-233</pages><issn>1050-0472</issn><eissn>1528-9001</eissn><abstract>Probabilistic design, such as reliability-based design and robust design, offers tools for making reliable decisions with the consideration of uncertainty associated with design variables/parameters and simulation models. Since a probabilistic optimization often involves a double-loop procedure for the overall optimization and iterative probabilistic assessment, the computational demand is extremely high. In this paper, the sequential optimization and reliability assessment (SORA) is developed to improve the efficiency of probabilistic optimization. The SORA method employs a single-loop strategy with a serial of cycles of deterministic optimization and reliability assessment. In each cycle, optimization and reliability assessment are decoupled from each other; the reliability assessment is only conducted after the deterministic optimization to verify constraint feasibility under uncertainty. The key to the proposed method is to shift the boundaries of violated constraints (with low reliability) to the feasible direction based on the reliability information obtained in the previous cycle. The design is quickly improved from cycle to cycle and the computational efficiency is improved significantly. Two engineering applications, the reliability-based design for vehicle crashworthiness of side impact and the integrated reliability and robust design of a speed reducer, are presented to demonstrate the effectiveness of the SORA method.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.1649968</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-0472
ispartof Journal of mechanical design (1990), 2004-03, Vol.126 (2), p.225-233
issn 1050-0472
1528-9001
language eng
recordid cdi_proquest_miscellaneous_28404085
source ASME Transactions Journals (Current)
subjects Applied sciences
Exact sciences and technology
Mechanical engineering. Machine design
title Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Optimization%20and%20Reliability%20Assessment%20Method%20for%20Efficient%20Probabilistic%20Design&rft.jtitle=Journal%20of%20mechanical%20design%20(1990)&rft.au=Du,%20Xiaoping&rft.date=2004-03-01&rft.volume=126&rft.issue=2&rft.spage=225&rft.epage=233&rft.pages=225-233&rft.issn=1050-0472&rft.eissn=1528-9001&rft_id=info:doi/10.1115/1.1649968&rft_dat=%3Cproquest_cross%3E28404085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28404085&rft_id=info:pmid/&rfr_iscdi=true