Graph structure learning layer and its graph convolution clustering application

To learn the embedding representation of graph structure data corrupted by noise and outliers, existing graph structure learning networks usually follow the two-step paradigm, i.e., constructing a “good” graph structure and achieving the message passing for signals supported on the learned graph. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2023-08, Vol.165, p.1010-1020
Hauptverfasser: He, Xiaxia, Wang, Boyue, Li, Ruikun, Gao, Junbin, Hu, Yongli, Huo, Guangyu, Yin, Baocai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1020
container_issue
container_start_page 1010
container_title Neural networks
container_volume 165
creator He, Xiaxia
Wang, Boyue
Li, Ruikun
Gao, Junbin
Hu, Yongli
Huo, Guangyu
Yin, Baocai
description To learn the embedding representation of graph structure data corrupted by noise and outliers, existing graph structure learning networks usually follow the two-step paradigm, i.e., constructing a “good” graph structure and achieving the message passing for signals supported on the learned graph. However, the data corrupted by noise may make the learned graph structure unreliable. In this paper, we propose an adaptive graph convolutional clustering network that alternatively adjusts the graph structure and node representation layer-by-layer with back-propagation. Specifically, we design a Graph Structure Learning layer before each Graph Convolutional layer to learn the sparse graph structure from the node representations, where the graph structure is implicitly determined by the solution to the optimal self-expression problem. This is one of the first works that uses an optimization process as a Graph Network layer, which is obviously different from the function operation in traditional deep learning layers. An efficient iterative optimization algorithm is given to solve the optimal self-expression problem in the Graph Structure Learning layer. Experimental results show that the proposed method can effectively defend the negative effects of inaccurate graph structures. The code is available at https://github.com/HeXiax/SSGNN.
doi_str_mv 10.1016/j.neunet.2023.06.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2840249043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608023003350</els_id><sourcerecordid>2840249043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-3f503a2b810c21352335a998ea45bc99d0c118c3ce3e3fad2d1876555cc33b583</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun78A5EevbROMm03vQgifoHgRc8hO53VLN20Jqngv7frqkdPA8PzzscjxKmEQoKsL1aF59FzKhQoLKAuQJU7Yib1vMnVXKtdMQPdYF6DhgNxGOMKAGpd4r44wHlZzyuNM_F0F-zwlsUURkpj4KxjG7zzr1lnPzlk1reZSzF7_cao9x99NybX-4y6MSYOG9QOQ-fIbtrHYm9pu8gnP_VIvNzePF_f549Pdw_XV485Ya1SjssK0KqFlkBKYqUQK9s0mm1ZLahpWiApNSExMi5tq9rpr7qqKiLExXT5kTjfzh1C_z5yTGbtInHXWc_9GI3S5eSjgRIntNyiFPoYAy_NENzahk8jwWxUmpXZqjQblQZqM0Wn2NnPhnGx5vYv9OtuAi63AE9_fjgOJpJjT9y6wJRM27v_N3wBuyaHrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840249043</pqid></control><display><type>article</type><title>Graph structure learning layer and its graph convolution clustering application</title><source>Elsevier ScienceDirect Journals Complete</source><creator>He, Xiaxia ; Wang, Boyue ; Li, Ruikun ; Gao, Junbin ; Hu, Yongli ; Huo, Guangyu ; Yin, Baocai</creator><creatorcontrib>He, Xiaxia ; Wang, Boyue ; Li, Ruikun ; Gao, Junbin ; Hu, Yongli ; Huo, Guangyu ; Yin, Baocai</creatorcontrib><description>To learn the embedding representation of graph structure data corrupted by noise and outliers, existing graph structure learning networks usually follow the two-step paradigm, i.e., constructing a “good” graph structure and achieving the message passing for signals supported on the learned graph. However, the data corrupted by noise may make the learned graph structure unreliable. In this paper, we propose an adaptive graph convolutional clustering network that alternatively adjusts the graph structure and node representation layer-by-layer with back-propagation. Specifically, we design a Graph Structure Learning layer before each Graph Convolutional layer to learn the sparse graph structure from the node representations, where the graph structure is implicitly determined by the solution to the optimal self-expression problem. This is one of the first works that uses an optimization process as a Graph Network layer, which is obviously different from the function operation in traditional deep learning layers. An efficient iterative optimization algorithm is given to solve the optimal self-expression problem in the Graph Structure Learning layer. Experimental results show that the proposed method can effectively defend the negative effects of inaccurate graph structures. The code is available at https://github.com/HeXiax/SSGNN.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2023.06.024</identifier><identifier>PMID: 37467583</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Graph convolutional network ; Graph structure learning ; Subspace clustering</subject><ispartof>Neural networks, 2023-08, Vol.165, p.1010-1020</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-3f503a2b810c21352335a998ea45bc99d0c118c3ce3e3fad2d1876555cc33b583</citedby><cites>FETCH-LOGICAL-c362t-3f503a2b810c21352335a998ea45bc99d0c118c3ce3e3fad2d1876555cc33b583</cites><orcidid>0000-0002-1517-6055 ; 0000-0002-2677-8342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2023.06.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37467583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Xiaxia</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Li, Ruikun</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Huo, Guangyu</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>Graph structure learning layer and its graph convolution clustering application</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>To learn the embedding representation of graph structure data corrupted by noise and outliers, existing graph structure learning networks usually follow the two-step paradigm, i.e., constructing a “good” graph structure and achieving the message passing for signals supported on the learned graph. However, the data corrupted by noise may make the learned graph structure unreliable. In this paper, we propose an adaptive graph convolutional clustering network that alternatively adjusts the graph structure and node representation layer-by-layer with back-propagation. Specifically, we design a Graph Structure Learning layer before each Graph Convolutional layer to learn the sparse graph structure from the node representations, where the graph structure is implicitly determined by the solution to the optimal self-expression problem. This is one of the first works that uses an optimization process as a Graph Network layer, which is obviously different from the function operation in traditional deep learning layers. An efficient iterative optimization algorithm is given to solve the optimal self-expression problem in the Graph Structure Learning layer. Experimental results show that the proposed method can effectively defend the negative effects of inaccurate graph structures. The code is available at https://github.com/HeXiax/SSGNN.</description><subject>Graph convolutional network</subject><subject>Graph structure learning</subject><subject>Subspace clustering</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoun78A5EevbROMm03vQgifoHgRc8hO53VLN20Jqngv7frqkdPA8PzzscjxKmEQoKsL1aF59FzKhQoLKAuQJU7Yib1vMnVXKtdMQPdYF6DhgNxGOMKAGpd4r44wHlZzyuNM_F0F-zwlsUURkpj4KxjG7zzr1lnPzlk1reZSzF7_cao9x99NybX-4y6MSYOG9QOQ-fIbtrHYm9pu8gnP_VIvNzePF_f549Pdw_XV485Ya1SjssK0KqFlkBKYqUQK9s0mm1ZLahpWiApNSExMi5tq9rpr7qqKiLExXT5kTjfzh1C_z5yTGbtInHXWc_9GI3S5eSjgRIntNyiFPoYAy_NENzahk8jwWxUmpXZqjQblQZqM0Wn2NnPhnGx5vYv9OtuAi63AE9_fjgOJpJjT9y6wJRM27v_N3wBuyaHrA</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>He, Xiaxia</creator><creator>Wang, Boyue</creator><creator>Li, Ruikun</creator><creator>Gao, Junbin</creator><creator>Hu, Yongli</creator><creator>Huo, Guangyu</creator><creator>Yin, Baocai</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1517-6055</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid></search><sort><creationdate>202308</creationdate><title>Graph structure learning layer and its graph convolution clustering application</title><author>He, Xiaxia ; Wang, Boyue ; Li, Ruikun ; Gao, Junbin ; Hu, Yongli ; Huo, Guangyu ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-3f503a2b810c21352335a998ea45bc99d0c118c3ce3e3fad2d1876555cc33b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graph convolutional network</topic><topic>Graph structure learning</topic><topic>Subspace clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xiaxia</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Li, Ruikun</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Huo, Guangyu</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xiaxia</au><au>Wang, Boyue</au><au>Li, Ruikun</au><au>Gao, Junbin</au><au>Hu, Yongli</au><au>Huo, Guangyu</au><au>Yin, Baocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph structure learning layer and its graph convolution clustering application</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2023-08</date><risdate>2023</risdate><volume>165</volume><spage>1010</spage><epage>1020</epage><pages>1010-1020</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>To learn the embedding representation of graph structure data corrupted by noise and outliers, existing graph structure learning networks usually follow the two-step paradigm, i.e., constructing a “good” graph structure and achieving the message passing for signals supported on the learned graph. However, the data corrupted by noise may make the learned graph structure unreliable. In this paper, we propose an adaptive graph convolutional clustering network that alternatively adjusts the graph structure and node representation layer-by-layer with back-propagation. Specifically, we design a Graph Structure Learning layer before each Graph Convolutional layer to learn the sparse graph structure from the node representations, where the graph structure is implicitly determined by the solution to the optimal self-expression problem. This is one of the first works that uses an optimization process as a Graph Network layer, which is obviously different from the function operation in traditional deep learning layers. An efficient iterative optimization algorithm is given to solve the optimal self-expression problem in the Graph Structure Learning layer. Experimental results show that the proposed method can effectively defend the negative effects of inaccurate graph structures. The code is available at https://github.com/HeXiax/SSGNN.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37467583</pmid><doi>10.1016/j.neunet.2023.06.024</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1517-6055</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2023-08, Vol.165, p.1010-1020
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2840249043
source Elsevier ScienceDirect Journals Complete
subjects Graph convolutional network
Graph structure learning
Subspace clustering
title Graph structure learning layer and its graph convolution clustering application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20structure%20learning%20layer%20and%20its%20graph%20convolution%20clustering%20application&rft.jtitle=Neural%20networks&rft.au=He,%20Xiaxia&rft.date=2023-08&rft.volume=165&rft.spage=1010&rft.epage=1020&rft.pages=1010-1020&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2023.06.024&rft_dat=%3Cproquest_cross%3E2840249043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840249043&rft_id=info:pmid/37467583&rft_els_id=S0893608023003350&rfr_iscdi=true