Oxygen Vacancy Induced Atom-Level Interface in Z‑Scheme SnO2/SnNb2O6 Heterojunctions for Robust Solar-Driven CO2 Conversion

The modulation of Z-scheme charge transfer is essential for efficient heterostructure toward photocatalytic CO2 reduction. However, constructing a compact hetero-interface favoring the Z-scheme charge transfer remains a great challenge. In this work, an interfacial Nb–O–Sn bond and built-in electric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-08, Vol.15 (30), p.36179-36189
Hauptverfasser: Li, Hui, Tong, Haojie, Zhang, Jingyu, Gao, Hongyu, Wang, Yinshu, Wang, Xiaojing, Chai, Zhanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36189
container_issue 30
container_start_page 36179
container_title ACS applied materials & interfaces
container_volume 15
creator Li, Hui
Tong, Haojie
Zhang, Jingyu
Gao, Hongyu
Wang, Yinshu
Wang, Xiaojing
Chai, Zhanli
description The modulation of Z-scheme charge transfer is essential for efficient heterostructure toward photocatalytic CO2 reduction. However, constructing a compact hetero-interface favoring the Z-scheme charge transfer remains a great challenge. In this work, an interfacial Nb–O–Sn bond and built-in electric field-modulated Z-scheme Ov-SnO2/SnNb2O6 heterojunction was prepared for efficient photocatalytic CO2 conversion. Systematic investigations reveal that an atomic-level interface is constructed in the Ov-SnO2/SnNb2O6 heterojunction. Under simulated sunlight irradiation, the obtained Ov-SnO2/SnNb2O6 photocatalyst exhibits a high CO evolution rate of 147.4 μmol h–1 g–1 from CO2 reduction, which is around 3-fold and 3.3-fold of SnO2/SnNb2O6 composite and pristine SnNb2O6, respectively, and favorable cyclability by retaining 95.8% rate retention after five consecutive tests. As determined by electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and density functional theory calculations, Nb–O–Sn bonds and built-in electric field induced by the addition of oxygen vacancies jointly accelerate the Z-scheme charge transfer for enhanced photocatalytic performance. This work provides a promising route for consciously modulating Z-scheme charge transfer by atomic-level interface engineering to boost photocatalytic performance.
doi_str_mv 10.1021/acsami.3c05501
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2840246374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840246374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-e22cf0e5caf1ac40aa4eb3e2bc40210034b833c5809772c4a9dfc0d0332e6a363</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFavnvcoQtrd2U2aHkv9aKEYMOrBS9hsJpqS7Go2KfYg-Bf8i_4SV1o8zcvw8M7wEHLO2Ygz4GOlnWqqkdAsDBk_IAM-lTKIIYTD_yzlMTlxbs1YJICFA_KZfGxf0NAnpZXRW7o0Ra-xoLPONsEKN1j7VYdtqTTSytDnn6_vVL9igzQ1CYxTc5dDEtEFesiue6O7yhpHS9vSe5v3rqOprVUbXLXVxt-ZJ0Dn1mywdZ47JUelqh2e7eeQPN5cP8wXwSq5Xc5nq0ABiC5AAF0yDLUqudKSKSUxFwi5z8AZEzKPhdBhzKaTCWippkWpWcGEAIyUiMSQXOx631r73qPrsqZyGutaGbS9yyD2RTISE-nRyx3qdWZr27fGP5Zxlv05znaOs71j8QvlJHF3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840246374</pqid></control><display><type>article</type><title>Oxygen Vacancy Induced Atom-Level Interface in Z‑Scheme SnO2/SnNb2O6 Heterojunctions for Robust Solar-Driven CO2 Conversion</title><source>American Chemical Society Journals</source><creator>Li, Hui ; Tong, Haojie ; Zhang, Jingyu ; Gao, Hongyu ; Wang, Yinshu ; Wang, Xiaojing ; Chai, Zhanli</creator><creatorcontrib>Li, Hui ; Tong, Haojie ; Zhang, Jingyu ; Gao, Hongyu ; Wang, Yinshu ; Wang, Xiaojing ; Chai, Zhanli</creatorcontrib><description>The modulation of Z-scheme charge transfer is essential for efficient heterostructure toward photocatalytic CO2 reduction. However, constructing a compact hetero-interface favoring the Z-scheme charge transfer remains a great challenge. In this work, an interfacial Nb–O–Sn bond and built-in electric field-modulated Z-scheme Ov-SnO2/SnNb2O6 heterojunction was prepared for efficient photocatalytic CO2 conversion. Systematic investigations reveal that an atomic-level interface is constructed in the Ov-SnO2/SnNb2O6 heterojunction. Under simulated sunlight irradiation, the obtained Ov-SnO2/SnNb2O6 photocatalyst exhibits a high CO evolution rate of 147.4 μmol h–1 g–1 from CO2 reduction, which is around 3-fold and 3.3-fold of SnO2/SnNb2O6 composite and pristine SnNb2O6, respectively, and favorable cyclability by retaining 95.8% rate retention after five consecutive tests. As determined by electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and density functional theory calculations, Nb–O–Sn bonds and built-in electric field induced by the addition of oxygen vacancies jointly accelerate the Z-scheme charge transfer for enhanced photocatalytic performance. This work provides a promising route for consciously modulating Z-scheme charge transfer by atomic-level interface engineering to boost photocatalytic performance.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c05501</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-08, Vol.15 (30), p.36179-36189</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6839-2990 ; 0000-0002-5599-2006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c05501$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c05501$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Tong, Haojie</creatorcontrib><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Gao, Hongyu</creatorcontrib><creatorcontrib>Wang, Yinshu</creatorcontrib><creatorcontrib>Wang, Xiaojing</creatorcontrib><creatorcontrib>Chai, Zhanli</creatorcontrib><title>Oxygen Vacancy Induced Atom-Level Interface in Z‑Scheme SnO2/SnNb2O6 Heterojunctions for Robust Solar-Driven CO2 Conversion</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The modulation of Z-scheme charge transfer is essential for efficient heterostructure toward photocatalytic CO2 reduction. However, constructing a compact hetero-interface favoring the Z-scheme charge transfer remains a great challenge. In this work, an interfacial Nb–O–Sn bond and built-in electric field-modulated Z-scheme Ov-SnO2/SnNb2O6 heterojunction was prepared for efficient photocatalytic CO2 conversion. Systematic investigations reveal that an atomic-level interface is constructed in the Ov-SnO2/SnNb2O6 heterojunction. Under simulated sunlight irradiation, the obtained Ov-SnO2/SnNb2O6 photocatalyst exhibits a high CO evolution rate of 147.4 μmol h–1 g–1 from CO2 reduction, which is around 3-fold and 3.3-fold of SnO2/SnNb2O6 composite and pristine SnNb2O6, respectively, and favorable cyclability by retaining 95.8% rate retention after five consecutive tests. As determined by electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and density functional theory calculations, Nb–O–Sn bonds and built-in electric field induced by the addition of oxygen vacancies jointly accelerate the Z-scheme charge transfer for enhanced photocatalytic performance. This work provides a promising route for consciously modulating Z-scheme charge transfer by atomic-level interface engineering to boost photocatalytic performance.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFavnvcoQtrd2U2aHkv9aKEYMOrBS9hsJpqS7Go2KfYg-Bf8i_4SV1o8zcvw8M7wEHLO2Ygz4GOlnWqqkdAsDBk_IAM-lTKIIYTD_yzlMTlxbs1YJICFA_KZfGxf0NAnpZXRW7o0Ra-xoLPONsEKN1j7VYdtqTTSytDnn6_vVL9igzQ1CYxTc5dDEtEFesiue6O7yhpHS9vSe5v3rqOprVUbXLXVxt-ZJ0Dn1mywdZ47JUelqh2e7eeQPN5cP8wXwSq5Xc5nq0ABiC5AAF0yDLUqudKSKSUxFwi5z8AZEzKPhdBhzKaTCWippkWpWcGEAIyUiMSQXOx631r73qPrsqZyGutaGbS9yyD2RTISE-nRyx3qdWZr27fGP5Zxlv05znaOs71j8QvlJHF3</recordid><startdate>20230802</startdate><enddate>20230802</enddate><creator>Li, Hui</creator><creator>Tong, Haojie</creator><creator>Zhang, Jingyu</creator><creator>Gao, Hongyu</creator><creator>Wang, Yinshu</creator><creator>Wang, Xiaojing</creator><creator>Chai, Zhanli</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6839-2990</orcidid><orcidid>https://orcid.org/0000-0002-5599-2006</orcidid></search><sort><creationdate>20230802</creationdate><title>Oxygen Vacancy Induced Atom-Level Interface in Z‑Scheme SnO2/SnNb2O6 Heterojunctions for Robust Solar-Driven CO2 Conversion</title><author>Li, Hui ; Tong, Haojie ; Zhang, Jingyu ; Gao, Hongyu ; Wang, Yinshu ; Wang, Xiaojing ; Chai, Zhanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-e22cf0e5caf1ac40aa4eb3e2bc40210034b833c5809772c4a9dfc0d0332e6a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Tong, Haojie</creatorcontrib><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Gao, Hongyu</creatorcontrib><creatorcontrib>Wang, Yinshu</creatorcontrib><creatorcontrib>Wang, Xiaojing</creatorcontrib><creatorcontrib>Chai, Zhanli</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Tong, Haojie</au><au>Zhang, Jingyu</au><au>Gao, Hongyu</au><au>Wang, Yinshu</au><au>Wang, Xiaojing</au><au>Chai, Zhanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Vacancy Induced Atom-Level Interface in Z‑Scheme SnO2/SnNb2O6 Heterojunctions for Robust Solar-Driven CO2 Conversion</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-08-02</date><risdate>2023</risdate><volume>15</volume><issue>30</issue><spage>36179</spage><epage>36189</epage><pages>36179-36189</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The modulation of Z-scheme charge transfer is essential for efficient heterostructure toward photocatalytic CO2 reduction. However, constructing a compact hetero-interface favoring the Z-scheme charge transfer remains a great challenge. In this work, an interfacial Nb–O–Sn bond and built-in electric field-modulated Z-scheme Ov-SnO2/SnNb2O6 heterojunction was prepared for efficient photocatalytic CO2 conversion. Systematic investigations reveal that an atomic-level interface is constructed in the Ov-SnO2/SnNb2O6 heterojunction. Under simulated sunlight irradiation, the obtained Ov-SnO2/SnNb2O6 photocatalyst exhibits a high CO evolution rate of 147.4 μmol h–1 g–1 from CO2 reduction, which is around 3-fold and 3.3-fold of SnO2/SnNb2O6 composite and pristine SnNb2O6, respectively, and favorable cyclability by retaining 95.8% rate retention after five consecutive tests. As determined by electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and density functional theory calculations, Nb–O–Sn bonds and built-in electric field induced by the addition of oxygen vacancies jointly accelerate the Z-scheme charge transfer for enhanced photocatalytic performance. This work provides a promising route for consciously modulating Z-scheme charge transfer by atomic-level interface engineering to boost photocatalytic performance.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c05501</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6839-2990</orcidid><orcidid>https://orcid.org/0000-0002-5599-2006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-08, Vol.15 (30), p.36179-36189
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2840246374
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Oxygen Vacancy Induced Atom-Level Interface in Z‑Scheme SnO2/SnNb2O6 Heterojunctions for Robust Solar-Driven CO2 Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Vacancy%20Induced%20Atom-Level%20Interface%20in%20Z%E2%80%91Scheme%20SnO2/SnNb2O6%20Heterojunctions%20for%20Robust%20Solar-Driven%20CO2%20Conversion&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Hui&rft.date=2023-08-02&rft.volume=15&rft.issue=30&rft.spage=36179&rft.epage=36189&rft.pages=36179-36189&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c05501&rft_dat=%3Cproquest_acs_j%3E2840246374%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840246374&rft_id=info:pmid/&rfr_iscdi=true