Improving efficiency and reducing enzyme inactivation during lipase-mediated epoxidation of α-pinene in a double-phase reaction system
Chemoenzymatic epoxidation of olefin mediated by lipase is a green and environmentally friendly alternative process. However, the mass transfer barrier and lipase deactivation caused by the traditional organic–water biphasic reaction system have always been the focus of researchers’ attention. To ov...
Gespeichert in:
Veröffentlicht in: | Bioprocess and biosystems engineering 2023-09, Vol.46 (9), p.1331-1340 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1340 |
---|---|
container_issue | 9 |
container_start_page | 1331 |
container_title | Bioprocess and biosystems engineering |
container_volume | 46 |
creator | Yu, Lishuang Zou, Cheng Li, Qingyun Liu, Zhaoming Liu, Youyan Tang, Aixing |
description | Chemoenzymatic epoxidation of olefin mediated by lipase is a green and environmentally friendly alternative process. However, the mass transfer barrier and lipase deactivation caused by the traditional organic–water biphasic reaction system have always been the focus of researchers’ attention. To overcome these issues, we investigated the effects of reaction temperature and two important substrates (H
2
O
2
and acyl donor) on the epoxidation reaction and interfacial mass transfer. As a result, we determined the optimal reaction conditions: a temperature of 30 °C, 30 wt-% H
2
O
2
as the oxygen source, and 1 M lauric acid as the oxygen carrier. Additionally, by simulating the conditions of shaking flask reactions, we designed a batch reactor and added a metal mesh to effectively block the direct contact between high-concentration hydrogen peroxide and the enzyme. Under these optimal conditions, the epoxidation reaction was carried out for 5 h, and the product yield reached a maximum of 93.2%. Furthermore, after seven repetitive experiments, the lipase still maintained a relative activity of 51.2%. |
doi_str_mv | 10.1007/s00449-023-02902-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2840244892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847144372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-c36b006d112574889f2f4c739e2db6fdcc16811f9b4130bc8dbbda9a2df47f413</originalsourceid><addsrcrecordid>eNp9kU1u1zAQxS0EoqXtBVggS2zYBMaOE8dLVFGoVIkNrC3HHoOrxAl2UvHnAj0PF-FMOE0LEgsW_tD4957teYQ8Z_CaAcg3GUAIVQGvy1DAK_GIHLOWNZVsoXn8sG8UOyLPcr4GYE3H4Sk5qqWQ0LXqmNxejnOabkL8QtH7YANGe6AmOprQrfauHn8cRqQhGruEG7OEKVK3pu1oCLPJWI3oglnQUZyn78HtyOTpr5_VHCLGTUwNddPaD1jNX4um2G92hcuHvOB4Sp54M2Q8u19PyOeLd5_OP1RXH99fnr-9qmzN26XMbQ_QOsZ4I0XXKc-9sLJWyF3femctazvGvOoFq6G3net7Z5ThzgvpS-2EvNp9y6-_rZgXPYZscRhMxGnNmncCuBCd4gV9-Q96Pa0pltdtlGRC1HKj-E7ZNOWc0Os5hdGkg2agt5j0HpMuMem7mLQoohf31mtfmvdH8pBLAeodyPPWaEx_7_6P7W92eKCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847144372</pqid></control><display><type>article</type><title>Improving efficiency and reducing enzyme inactivation during lipase-mediated epoxidation of α-pinene in a double-phase reaction system</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Yu, Lishuang ; Zou, Cheng ; Li, Qingyun ; Liu, Zhaoming ; Liu, Youyan ; Tang, Aixing</creator><creatorcontrib>Yu, Lishuang ; Zou, Cheng ; Li, Qingyun ; Liu, Zhaoming ; Liu, Youyan ; Tang, Aixing</creatorcontrib><description>Chemoenzymatic epoxidation of olefin mediated by lipase is a green and environmentally friendly alternative process. However, the mass transfer barrier and lipase deactivation caused by the traditional organic–water biphasic reaction system have always been the focus of researchers’ attention. To overcome these issues, we investigated the effects of reaction temperature and two important substrates (H
2
O
2
and acyl donor) on the epoxidation reaction and interfacial mass transfer. As a result, we determined the optimal reaction conditions: a temperature of 30 °C, 30 wt-% H
2
O
2
as the oxygen source, and 1 M lauric acid as the oxygen carrier. Additionally, by simulating the conditions of shaking flask reactions, we designed a batch reactor and added a metal mesh to effectively block the direct contact between high-concentration hydrogen peroxide and the enzyme. Under these optimal conditions, the epoxidation reaction was carried out for 5 h, and the product yield reached a maximum of 93.2%. Furthermore, after seven repetitive experiments, the lipase still maintained a relative activity of 51.2%.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-023-02902-4</identifier><identifier>PMID: 37470869</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alkenes ; Batch reactors ; Bicyclic Monoterpenes ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Environmental Engineering/Biotechnology ; Enzymes ; Epoxidation ; Finite element method ; Food Science ; Hydrogen Peroxide ; Inactivation ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Lauric acid ; Lipase ; Mass transfer ; Oxygen ; Research Paper ; Shaking ; Substrates ; α-Pinene</subject><ispartof>Bioprocess and biosystems engineering, 2023-09, Vol.46 (9), p.1331-1340</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-c36b006d112574889f2f4c739e2db6fdcc16811f9b4130bc8dbbda9a2df47f413</cites><orcidid>0009-0002-9971-2341 ; 0000-0002-0543-6351 ; 0000-0002-2244-0002 ; 0000-0003-4459-7841 ; 0009-0002-0447-2980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-023-02902-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-023-02902-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37470869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Lishuang</creatorcontrib><creatorcontrib>Zou, Cheng</creatorcontrib><creatorcontrib>Li, Qingyun</creatorcontrib><creatorcontrib>Liu, Zhaoming</creatorcontrib><creatorcontrib>Liu, Youyan</creatorcontrib><creatorcontrib>Tang, Aixing</creatorcontrib><title>Improving efficiency and reducing enzyme inactivation during lipase-mediated epoxidation of α-pinene in a double-phase reaction system</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>Chemoenzymatic epoxidation of olefin mediated by lipase is a green and environmentally friendly alternative process. However, the mass transfer barrier and lipase deactivation caused by the traditional organic–water biphasic reaction system have always been the focus of researchers’ attention. To overcome these issues, we investigated the effects of reaction temperature and two important substrates (H
2
O
2
and acyl donor) on the epoxidation reaction and interfacial mass transfer. As a result, we determined the optimal reaction conditions: a temperature of 30 °C, 30 wt-% H
2
O
2
as the oxygen source, and 1 M lauric acid as the oxygen carrier. Additionally, by simulating the conditions of shaking flask reactions, we designed a batch reactor and added a metal mesh to effectively block the direct contact between high-concentration hydrogen peroxide and the enzyme. Under these optimal conditions, the epoxidation reaction was carried out for 5 h, and the product yield reached a maximum of 93.2%. Furthermore, after seven repetitive experiments, the lipase still maintained a relative activity of 51.2%.</description><subject>Alkenes</subject><subject>Batch reactors</subject><subject>Bicyclic Monoterpenes</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Enzymes</subject><subject>Epoxidation</subject><subject>Finite element method</subject><subject>Food Science</subject><subject>Hydrogen Peroxide</subject><subject>Inactivation</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lauric acid</subject><subject>Lipase</subject><subject>Mass transfer</subject><subject>Oxygen</subject><subject>Research Paper</subject><subject>Shaking</subject><subject>Substrates</subject><subject>α-Pinene</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1u1zAQxS0EoqXtBVggS2zYBMaOE8dLVFGoVIkNrC3HHoOrxAl2UvHnAj0PF-FMOE0LEgsW_tD4957teYQ8Z_CaAcg3GUAIVQGvy1DAK_GIHLOWNZVsoXn8sG8UOyLPcr4GYE3H4Sk5qqWQ0LXqmNxejnOabkL8QtH7YANGe6AmOprQrfauHn8cRqQhGruEG7OEKVK3pu1oCLPJWI3oglnQUZyn78HtyOTpr5_VHCLGTUwNddPaD1jNX4um2G92hcuHvOB4Sp54M2Q8u19PyOeLd5_OP1RXH99fnr-9qmzN26XMbQ_QOsZ4I0XXKc-9sLJWyF3femctazvGvOoFq6G3net7Z5ThzgvpS-2EvNp9y6-_rZgXPYZscRhMxGnNmncCuBCd4gV9-Q96Pa0pltdtlGRC1HKj-E7ZNOWc0Os5hdGkg2agt5j0HpMuMem7mLQoohf31mtfmvdH8pBLAeodyPPWaEx_7_6P7W92eKCY</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Yu, Lishuang</creator><creator>Zou, Cheng</creator><creator>Li, Qingyun</creator><creator>Liu, Zhaoming</creator><creator>Liu, Youyan</creator><creator>Tang, Aixing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-9971-2341</orcidid><orcidid>https://orcid.org/0000-0002-0543-6351</orcidid><orcidid>https://orcid.org/0000-0002-2244-0002</orcidid><orcidid>https://orcid.org/0000-0003-4459-7841</orcidid><orcidid>https://orcid.org/0009-0002-0447-2980</orcidid></search><sort><creationdate>20230901</creationdate><title>Improving efficiency and reducing enzyme inactivation during lipase-mediated epoxidation of α-pinene in a double-phase reaction system</title><author>Yu, Lishuang ; Zou, Cheng ; Li, Qingyun ; Liu, Zhaoming ; Liu, Youyan ; Tang, Aixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-c36b006d112574889f2f4c739e2db6fdcc16811f9b4130bc8dbbda9a2df47f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkenes</topic><topic>Batch reactors</topic><topic>Bicyclic Monoterpenes</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Enzymes</topic><topic>Epoxidation</topic><topic>Finite element method</topic><topic>Food Science</topic><topic>Hydrogen Peroxide</topic><topic>Inactivation</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lauric acid</topic><topic>Lipase</topic><topic>Mass transfer</topic><topic>Oxygen</topic><topic>Research Paper</topic><topic>Shaking</topic><topic>Substrates</topic><topic>α-Pinene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lishuang</creatorcontrib><creatorcontrib>Zou, Cheng</creatorcontrib><creatorcontrib>Li, Qingyun</creatorcontrib><creatorcontrib>Liu, Zhaoming</creatorcontrib><creatorcontrib>Liu, Youyan</creatorcontrib><creatorcontrib>Tang, Aixing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lishuang</au><au>Zou, Cheng</au><au>Li, Qingyun</au><au>Liu, Zhaoming</au><au>Liu, Youyan</au><au>Tang, Aixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving efficiency and reducing enzyme inactivation during lipase-mediated epoxidation of α-pinene in a double-phase reaction system</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>46</volume><issue>9</issue><spage>1331</spage><epage>1340</epage><pages>1331-1340</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>Chemoenzymatic epoxidation of olefin mediated by lipase is a green and environmentally friendly alternative process. However, the mass transfer barrier and lipase deactivation caused by the traditional organic–water biphasic reaction system have always been the focus of researchers’ attention. To overcome these issues, we investigated the effects of reaction temperature and two important substrates (H
2
O
2
and acyl donor) on the epoxidation reaction and interfacial mass transfer. As a result, we determined the optimal reaction conditions: a temperature of 30 °C, 30 wt-% H
2
O
2
as the oxygen source, and 1 M lauric acid as the oxygen carrier. Additionally, by simulating the conditions of shaking flask reactions, we designed a batch reactor and added a metal mesh to effectively block the direct contact between high-concentration hydrogen peroxide and the enzyme. Under these optimal conditions, the epoxidation reaction was carried out for 5 h, and the product yield reached a maximum of 93.2%. Furthermore, after seven repetitive experiments, the lipase still maintained a relative activity of 51.2%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37470869</pmid><doi>10.1007/s00449-023-02902-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0002-9971-2341</orcidid><orcidid>https://orcid.org/0000-0002-0543-6351</orcidid><orcidid>https://orcid.org/0000-0002-2244-0002</orcidid><orcidid>https://orcid.org/0000-0003-4459-7841</orcidid><orcidid>https://orcid.org/0009-0002-0447-2980</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-7591 |
ispartof | Bioprocess and biosystems engineering, 2023-09, Vol.46 (9), p.1331-1340 |
issn | 1615-7591 1615-7605 |
language | eng |
recordid | cdi_proquest_miscellaneous_2840244892 |
source | MEDLINE; SpringerNature Journals |
subjects | Alkenes Batch reactors Bicyclic Monoterpenes Biotechnology Chemistry Chemistry and Materials Science Environmental Engineering/Biotechnology Enzymes Epoxidation Finite element method Food Science Hydrogen Peroxide Inactivation Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Lauric acid Lipase Mass transfer Oxygen Research Paper Shaking Substrates α-Pinene |
title | Improving efficiency and reducing enzyme inactivation during lipase-mediated epoxidation of α-pinene in a double-phase reaction system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20efficiency%20and%20reducing%20enzyme%20inactivation%20during%20lipase-mediated%20epoxidation%20of%20%CE%B1-pinene%20in%20a%20double-phase%20reaction%20system&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Yu,%20Lishuang&rft.date=2023-09-01&rft.volume=46&rft.issue=9&rft.spage=1331&rft.epage=1340&rft.pages=1331-1340&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-023-02902-4&rft_dat=%3Cproquest_cross%3E2847144372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847144372&rft_id=info:pmid/37470869&rfr_iscdi=true |