Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths

The question of whether virtual geomagnetic poles (VGPs) recorded during reversals and excursions show a longitudinal preference is a controversial one amongst palaeomagnetists. One possible mechanism for such VGP clustering is the heterogeneity of heat flux at the core—mantle boundary (CMB). We use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2004-06, Vol.157 (3), p.1105-1118
Hauptverfasser: Kutzner, C., Christensen, U. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1118
container_issue 3
container_start_page 1105
container_title Geophysical journal international
container_volume 157
creator Kutzner, C.
Christensen, U. R.
description The question of whether virtual geomagnetic poles (VGPs) recorded during reversals and excursions show a longitudinal preference is a controversial one amongst palaeomagnetists. One possible mechanism for such VGP clustering is the heterogeneity of heat flux at the core—mantle boundary (CMB). We use 3-D convection-driven numerical dynamo models with imposed non-uniform CMB heat flow that show stochastic reversals of the dipole field. We calculate transitional VGPs for a large number of token sites at the Earth's surface. In a model with a simple heat flux variation given by a Y22 harmonic, the VGP density maps for individual reversals differ substantially from each other, but the VGPs have a tendency to fall around a longitude of high heat flow. The mean VGP density for many reversals and excursions shows a statistically significant correlation with the heat flow. In a model with an imposed heat flux pattern derived from seismic tomography we find maxima of the mean VGP density at American and East Asian longitudes, roughly consistent with the VGP paths seen in several palaeomagnetic studies. We find that low-latitude regions of high heat flow are centres of magnetic activity where intense magnetic flux bundles are generated. They contribute to the equatorial dipole component and bias its orientation in longitude. During reversals the equatorial dipole part is not necessarily dominant at the Earth's surface, but is strong enough to explain the longitudinal preference of VGPs as seen from different sites.
doi_str_mv 10.1111/j.1365-246X.2004.02309.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28402169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28402169</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5089-59ec1472a4f9c86ba54359ba41ad147720b31c5d246e990c8378d4e823ca47523</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwHzKxJfgziQcGVEFbiECIgioWy02uJSVpgp2U9t_jEITEhpezfO9zOj8IeQQHxJ2LdUBYKHzKw3lAMeYBpgzLYHeABr-NQzTAUoS-4Hh-jE6sXWNMOOHxACVPedkWuoHMW0FV6tUGmjz1DGzBWF1YT28yrzawBGNcZpubptXFn2xdFeDVunmzp-ho6Rg4-6lD9HxzPRtN_ORhPB1dJb4WOJa-kJASHlHNlzKNw4UWnAm50JzozL1HFC8YSUXmVgcpcRqzKM44xJSlmkeCsiE67-fWpvpowTaqzG0KRaE3ULVW0ZhjSkLpgnEfTE1lrfuFqk1earNXBKtOn1qrzpLqLKlOn_rWp3YOvezRz7yA_b85Nb6ddjfH-z2f2wZ2v7w27yqMWCTUZP6qyOxOPCYv92rMvgCo14Yi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28402169</pqid></control><display><type>article</type><title>Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths</title><source>Wiley Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><creator>Kutzner, C. ; Christensen, U. R.</creator><creatorcontrib>Kutzner, C. ; Christensen, U. R.</creatorcontrib><description>The question of whether virtual geomagnetic poles (VGPs) recorded during reversals and excursions show a longitudinal preference is a controversial one amongst palaeomagnetists. One possible mechanism for such VGP clustering is the heterogeneity of heat flux at the core—mantle boundary (CMB). We use 3-D convection-driven numerical dynamo models with imposed non-uniform CMB heat flow that show stochastic reversals of the dipole field. We calculate transitional VGPs for a large number of token sites at the Earth's surface. In a model with a simple heat flux variation given by a Y22 harmonic, the VGP density maps for individual reversals differ substantially from each other, but the VGPs have a tendency to fall around a longitude of high heat flow. The mean VGP density for many reversals and excursions shows a statistically significant correlation with the heat flow. In a model with an imposed heat flux pattern derived from seismic tomography we find maxima of the mean VGP density at American and East Asian longitudes, roughly consistent with the VGP paths seen in several palaeomagnetic studies. We find that low-latitude regions of high heat flow are centres of magnetic activity where intense magnetic flux bundles are generated. They contribute to the equatorial dipole component and bias its orientation in longitude. During reversals the equatorial dipole part is not necessarily dominant at the Earth's surface, but is strong enough to explain the longitudinal preference of VGPs as seen from different sites.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1111/j.1365-246X.2004.02309.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>core–mantle coupling ; geodynamo model ; palaeomagnetism ; reversals</subject><ispartof>Geophysical journal international, 2004-06, Vol.157 (3), p.1105-1118</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5089-59ec1472a4f9c86ba54359ba41ad147720b31c5d246e990c8378d4e823ca47523</citedby><cites>FETCH-LOGICAL-a5089-59ec1472a4f9c86ba54359ba41ad147720b31c5d246e990c8378d4e823ca47523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-246X.2004.02309.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-246X.2004.02309.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kutzner, C.</creatorcontrib><creatorcontrib>Christensen, U. R.</creatorcontrib><title>Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths</title><title>Geophysical journal international</title><addtitle>Geophys. J. Int</addtitle><description>The question of whether virtual geomagnetic poles (VGPs) recorded during reversals and excursions show a longitudinal preference is a controversial one amongst palaeomagnetists. One possible mechanism for such VGP clustering is the heterogeneity of heat flux at the core—mantle boundary (CMB). We use 3-D convection-driven numerical dynamo models with imposed non-uniform CMB heat flow that show stochastic reversals of the dipole field. We calculate transitional VGPs for a large number of token sites at the Earth's surface. In a model with a simple heat flux variation given by a Y22 harmonic, the VGP density maps for individual reversals differ substantially from each other, but the VGPs have a tendency to fall around a longitude of high heat flow. The mean VGP density for many reversals and excursions shows a statistically significant correlation with the heat flow. In a model with an imposed heat flux pattern derived from seismic tomography we find maxima of the mean VGP density at American and East Asian longitudes, roughly consistent with the VGP paths seen in several palaeomagnetic studies. We find that low-latitude regions of high heat flow are centres of magnetic activity where intense magnetic flux bundles are generated. They contribute to the equatorial dipole component and bias its orientation in longitude. During reversals the equatorial dipole part is not necessarily dominant at the Earth's surface, but is strong enough to explain the longitudinal preference of VGPs as seen from different sites.</description><subject>core–mantle coupling</subject><subject>geodynamo model</subject><subject>palaeomagnetism</subject><subject>reversals</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwHzKxJfgziQcGVEFbiECIgioWy02uJSVpgp2U9t_jEITEhpezfO9zOj8IeQQHxJ2LdUBYKHzKw3lAMeYBpgzLYHeABr-NQzTAUoS-4Hh-jE6sXWNMOOHxACVPedkWuoHMW0FV6tUGmjz1DGzBWF1YT28yrzawBGNcZpubptXFn2xdFeDVunmzp-ho6Rg4-6lD9HxzPRtN_ORhPB1dJb4WOJa-kJASHlHNlzKNw4UWnAm50JzozL1HFC8YSUXmVgcpcRqzKM44xJSlmkeCsiE67-fWpvpowTaqzG0KRaE3ULVW0ZhjSkLpgnEfTE1lrfuFqk1earNXBKtOn1qrzpLqLKlOn_rWp3YOvezRz7yA_b85Nb6ddjfH-z2f2wZ2v7w27yqMWCTUZP6qyOxOPCYv92rMvgCo14Yi</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Kutzner, C.</creator><creator>Christensen, U. R.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>200406</creationdate><title>Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths</title><author>Kutzner, C. ; Christensen, U. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5089-59ec1472a4f9c86ba54359ba41ad147720b31c5d246e990c8378d4e823ca47523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>core–mantle coupling</topic><topic>geodynamo model</topic><topic>palaeomagnetism</topic><topic>reversals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutzner, C.</creatorcontrib><creatorcontrib>Christensen, U. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutzner, C.</au><au>Christensen, U. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths</atitle><jtitle>Geophysical journal international</jtitle><addtitle>Geophys. J. Int</addtitle><date>2004-06</date><risdate>2004</risdate><volume>157</volume><issue>3</issue><spage>1105</spage><epage>1118</epage><pages>1105-1118</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>The question of whether virtual geomagnetic poles (VGPs) recorded during reversals and excursions show a longitudinal preference is a controversial one amongst palaeomagnetists. One possible mechanism for such VGP clustering is the heterogeneity of heat flux at the core—mantle boundary (CMB). We use 3-D convection-driven numerical dynamo models with imposed non-uniform CMB heat flow that show stochastic reversals of the dipole field. We calculate transitional VGPs for a large number of token sites at the Earth's surface. In a model with a simple heat flux variation given by a Y22 harmonic, the VGP density maps for individual reversals differ substantially from each other, but the VGPs have a tendency to fall around a longitude of high heat flow. The mean VGP density for many reversals and excursions shows a statistically significant correlation with the heat flow. In a model with an imposed heat flux pattern derived from seismic tomography we find maxima of the mean VGP density at American and East Asian longitudes, roughly consistent with the VGP paths seen in several palaeomagnetic studies. We find that low-latitude regions of high heat flow are centres of magnetic activity where intense magnetic flux bundles are generated. They contribute to the equatorial dipole component and bias its orientation in longitude. During reversals the equatorial dipole part is not necessarily dominant at the Earth's surface, but is strong enough to explain the longitudinal preference of VGPs as seen from different sites.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-246X.2004.02309.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2004-06, Vol.157 (3), p.1105-1118
issn 0956-540X
1365-246X
language eng
recordid cdi_proquest_miscellaneous_28402169
source Wiley Journals; Access via Oxford University Press (Open Access Collection)
subjects core–mantle coupling
geodynamo model
palaeomagnetism
reversals
title Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20geomagnetic%20reversals%20and%20preferred%20virtual%20geomagnetic%20pole%20paths&rft.jtitle=Geophysical%20journal%20international&rft.au=Kutzner,%20C.&rft.date=2004-06&rft.volume=157&rft.issue=3&rft.spage=1105&rft.epage=1118&rft.pages=1105-1118&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1111/j.1365-246X.2004.02309.x&rft_dat=%3Cproquest_cross%3E28402169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28402169&rft_id=info:pmid/&rfr_iscdi=true