Neighborhoods of a certain family of multivalent functions with negative coefficients

By making use of the familiar concept of neighborhoods of analytic and p-valent functions, the authors prove coefficient bounds and distortion inequalities, and associated inclusion relations for the ( n, δ)-neighborhoods of a family of multivalent functions with negative coefficients, which is defi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2004-05, Vol.47 (10), p.1667-1672
Hauptverfasser: Altintaş, O., Özkan, Ö., Srivastava, H.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1672
container_issue 10
container_start_page 1667
container_title Computers & mathematics with applications (1987)
container_volume 47
creator Altintaş, O.
Özkan, Ö.
Srivastava, H.M.
description By making use of the familiar concept of neighborhoods of analytic and p-valent functions, the authors prove coefficient bounds and distortion inequalities, and associated inclusion relations for the ( n, δ)-neighborhoods of a family of multivalent functions with negative coefficients, which is defined by means of a certain nonhomogeneous Cauchy-Euler differential equation. Relevant connections of the various function classes investigated in this paper with those considered by earlier workers on the subject are also mentioned.
doi_str_mv 10.1016/j.camwa.2004.06.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28399569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122104839804</els_id><sourcerecordid>28399569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-22baff9641c96c1fc7fc81784192911b5095b96338f6cdbb6b132848b244215d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwC1g8sSX4I3HtgQFVfEkVLHS2bMduXSVxsZ1W_HsSysz0pPfOfdI9ANxiVGKE2f2uNKo7qpIgVJWIlQhXZ2CG-YIWC8b4OZghLniBCcGX4CqlHRpBStAMrN-t32x1iNsQmgSDgwoaG7PyPXSq8-33tOuGNvuDam2foRt6k33oEzz6vIW93ajxZqEJ1jlv_Mika3DhVJvszd-cg_Xz0-fytVh9vLwtH1eFoZTkghCtnBOswkYwg51ZOMPxgldYEIGxrpGotWCUcsdMozXTmBJecU2qiuC6oXNwd_q7j-FrsCnLzidj21b1NgxJEk6FqJkYQXoCTQwpRevkPvpOxW-JkZwUyp38VSgnhRIxOSocUw-nlB07HLyNMk39jG18tCbLJvh_8z8-kHvJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28399569</pqid></control><display><type>article</type><title>Neighborhoods of a certain family of multivalent functions with negative coefficients</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Altintaş, O. ; Özkan, Ö. ; Srivastava, H.M.</creator><creatorcontrib>Altintaş, O. ; Özkan, Ö. ; Srivastava, H.M.</creatorcontrib><description>By making use of the familiar concept of neighborhoods of analytic and p-valent functions, the authors prove coefficient bounds and distortion inequalities, and associated inclusion relations for the ( n, δ)-neighborhoods of a family of multivalent functions with negative coefficients, which is defined by means of a certain nonhomogeneous Cauchy-Euler differential equation. Relevant connections of the various function classes investigated in this paper with those considered by earlier workers on the subject are also mentioned.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2004.06.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>( n δ)-neighborhood ; Analytic functions ; Cauchy-Euler differential equation ; Convex functions ; Distortion inequalities ; Inclusion relations ; p-valent functions ; Starlike functions ; Univalent functions</subject><ispartof>Computers &amp; mathematics with applications (1987), 2004-05, Vol.47 (10), p.1667-1672</ispartof><rights>2004 Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-22baff9641c96c1fc7fc81784192911b5095b96338f6cdbb6b132848b244215d3</citedby><cites>FETCH-LOGICAL-c332t-22baff9641c96c1fc7fc81784192911b5095b96338f6cdbb6b132848b244215d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122104839804$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Altintaş, O.</creatorcontrib><creatorcontrib>Özkan, Ö.</creatorcontrib><creatorcontrib>Srivastava, H.M.</creatorcontrib><title>Neighborhoods of a certain family of multivalent functions with negative coefficients</title><title>Computers &amp; mathematics with applications (1987)</title><description>By making use of the familiar concept of neighborhoods of analytic and p-valent functions, the authors prove coefficient bounds and distortion inequalities, and associated inclusion relations for the ( n, δ)-neighborhoods of a family of multivalent functions with negative coefficients, which is defined by means of a certain nonhomogeneous Cauchy-Euler differential equation. Relevant connections of the various function classes investigated in this paper with those considered by earlier workers on the subject are also mentioned.</description><subject>( n δ)-neighborhood</subject><subject>Analytic functions</subject><subject>Cauchy-Euler differential equation</subject><subject>Convex functions</subject><subject>Distortion inequalities</subject><subject>Inclusion relations</subject><subject>p-valent functions</subject><subject>Starlike functions</subject><subject>Univalent functions</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwC1g8sSX4I3HtgQFVfEkVLHS2bMduXSVxsZ1W_HsSysz0pPfOfdI9ANxiVGKE2f2uNKo7qpIgVJWIlQhXZ2CG-YIWC8b4OZghLniBCcGX4CqlHRpBStAMrN-t32x1iNsQmgSDgwoaG7PyPXSq8-33tOuGNvuDam2foRt6k33oEzz6vIW93ajxZqEJ1jlv_Mika3DhVJvszd-cg_Xz0-fytVh9vLwtH1eFoZTkghCtnBOswkYwg51ZOMPxgldYEIGxrpGotWCUcsdMozXTmBJecU2qiuC6oXNwd_q7j-FrsCnLzidj21b1NgxJEk6FqJkYQXoCTQwpRevkPvpOxW-JkZwUyp38VSgnhRIxOSocUw-nlB07HLyNMk39jG18tCbLJvh_8z8-kHvJ</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Altintaş, O.</creator><creator>Özkan, Ö.</creator><creator>Srivastava, H.M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040501</creationdate><title>Neighborhoods of a certain family of multivalent functions with negative coefficients</title><author>Altintaş, O. ; Özkan, Ö. ; Srivastava, H.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-22baff9641c96c1fc7fc81784192911b5095b96338f6cdbb6b132848b244215d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>( n δ)-neighborhood</topic><topic>Analytic functions</topic><topic>Cauchy-Euler differential equation</topic><topic>Convex functions</topic><topic>Distortion inequalities</topic><topic>Inclusion relations</topic><topic>p-valent functions</topic><topic>Starlike functions</topic><topic>Univalent functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altintaş, O.</creatorcontrib><creatorcontrib>Özkan, Ö.</creatorcontrib><creatorcontrib>Srivastava, H.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altintaş, O.</au><au>Özkan, Ö.</au><au>Srivastava, H.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighborhoods of a certain family of multivalent functions with negative coefficients</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>47</volume><issue>10</issue><spage>1667</spage><epage>1672</epage><pages>1667-1672</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>By making use of the familiar concept of neighborhoods of analytic and p-valent functions, the authors prove coefficient bounds and distortion inequalities, and associated inclusion relations for the ( n, δ)-neighborhoods of a family of multivalent functions with negative coefficients, which is defined by means of a certain nonhomogeneous Cauchy-Euler differential equation. Relevant connections of the various function classes investigated in this paper with those considered by earlier workers on the subject are also mentioned.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2004.06.014</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2004-05, Vol.47 (10), p.1667-1672
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_28399569
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects ( n δ)-neighborhood
Analytic functions
Cauchy-Euler differential equation
Convex functions
Distortion inequalities
Inclusion relations
p-valent functions
Starlike functions
Univalent functions
title Neighborhoods of a certain family of multivalent functions with negative coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighborhoods%20of%20a%20certain%20family%20of%20multivalent%20functions%20with%20negative%20coefficients&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Altinta%C5%9F,%20O.&rft.date=2004-05-01&rft.volume=47&rft.issue=10&rft.spage=1667&rft.epage=1672&rft.pages=1667-1672&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2004.06.014&rft_dat=%3Cproquest_cross%3E28399569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28399569&rft_id=info:pmid/&rft_els_id=S0898122104839804&rfr_iscdi=true