Imposing structure on Smith-form decompositions of rational resampling matrices
Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 1994-04, Vol.42 (4), p.970-973 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 973 |
---|---|
container_issue | 4 |
container_start_page | 970 |
container_title | IEEE transactions on signal processing |
container_volume | 42 |
creator | Evans, B.L. Gardos, T.R. McClellan, J.H. |
description | Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and /spl Lambda/ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992).< > |
doi_str_mv | 10.1109/78.285665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28398683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>285665</ieee_id><sourcerecordid>28398683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-18a61ac7fdd79a75edf113f51172f4b47783af95fca8d53943d39e0414762d2c3</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUwsDJlQEgMKXZsx_aIKj4qVeoASGzR4dhglMTBlw7896Sk6nRPut97p3uEXDK6YIyaO6UXhZZlKY_IjBnBcipUeTxqKnkutXo_JWeI35QyIUw5I5tV20cM3WeGQ9raYZtcFrvspQ3DV-5jarPa2fjPDCF2mEWfJdhJaLLkENq-2blbGFKwDs_JiYcG3cV-zsnb48Pr8jlfb55Wy_t1bjkth5xpKBlY5etaGVDS1Z4x7iVjqvDiQyilOXgjvQVdS24Er7lxVLDxm6IuLJ-Tmym3T_Fn63Co2oDWNQ10Lm6xKjQ3utR8BG8n0KaImJyv-hRaSL8Vo9WuskrpaqpsZK_3oYAWGp-gswEPhvE6N0qM2NWEBefcYbvP-APzdHQr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28398683</pqid></control><display><type>article</type><title>Imposing structure on Smith-form decompositions of rational resampling matrices</title><source>IEEE Electronic Library (IEL)</source><creator>Evans, B.L. ; Gardos, T.R. ; McClellan, J.H.</creator><creatorcontrib>Evans, B.L. ; Gardos, T.R. ; McClellan, J.H.</creatorcontrib><description>Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and /spl Lambda/ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992).< ></description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.285665</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Convolution ; Detection, estimation, filtering, equalization, prediction ; Digital signal processing ; Exact sciences and technology ; Information, signal and communications theory ; Matrix decomposition ; Multidimensional signal processing ; Multidimensional systems ; Reduced instruction set computing ; Signal and communications theory ; Signal processing algorithms ; Signal sampling ; Signal, noise ; Speech processing ; Telecommunications and information theory ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on signal processing, 1994-04, Vol.42 (4), p.970-973</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-18a61ac7fdd79a75edf113f51172f4b47783af95fca8d53943d39e0414762d2c3</citedby><cites>FETCH-LOGICAL-c306t-18a61ac7fdd79a75edf113f51172f4b47783af95fca8d53943d39e0414762d2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/285665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/285665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4143974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, B.L.</creatorcontrib><creatorcontrib>Gardos, T.R.</creatorcontrib><creatorcontrib>McClellan, J.H.</creatorcontrib><title>Imposing structure on Smith-form decompositions of rational resampling matrices</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and /spl Lambda/ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992).< ></description><subject>Applied sciences</subject><subject>Convolution</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital signal processing</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Matrix decomposition</subject><subject>Multidimensional signal processing</subject><subject>Multidimensional systems</subject><subject>Reduced instruction set computing</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal sampling</subject><subject>Signal, noise</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><subject>Unmanned aerial vehicles</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqUwsDJlQEgMKXZsx_aIKj4qVeoASGzR4dhglMTBlw7896Sk6nRPut97p3uEXDK6YIyaO6UXhZZlKY_IjBnBcipUeTxqKnkutXo_JWeI35QyIUw5I5tV20cM3WeGQ9raYZtcFrvspQ3DV-5jarPa2fjPDCF2mEWfJdhJaLLkENq-2blbGFKwDs_JiYcG3cV-zsnb48Pr8jlfb55Wy_t1bjkth5xpKBlY5etaGVDS1Z4x7iVjqvDiQyilOXgjvQVdS24Er7lxVLDxm6IuLJ-Tmym3T_Fn63Co2oDWNQ10Lm6xKjQ3utR8BG8n0KaImJyv-hRaSL8Vo9WuskrpaqpsZK_3oYAWGp-gswEPhvE6N0qM2NWEBefcYbvP-APzdHQr</recordid><startdate>19940401</startdate><enddate>19940401</enddate><creator>Evans, B.L.</creator><creator>Gardos, T.R.</creator><creator>McClellan, J.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940401</creationdate><title>Imposing structure on Smith-form decompositions of rational resampling matrices</title><author>Evans, B.L. ; Gardos, T.R. ; McClellan, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-18a61ac7fdd79a75edf113f51172f4b47783af95fca8d53943d39e0414762d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Convolution</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital signal processing</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Matrix decomposition</topic><topic>Multidimensional signal processing</topic><topic>Multidimensional systems</topic><topic>Reduced instruction set computing</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal sampling</topic><topic>Signal, noise</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, B.L.</creatorcontrib><creatorcontrib>Gardos, T.R.</creatorcontrib><creatorcontrib>McClellan, J.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Evans, B.L.</au><au>Gardos, T.R.</au><au>McClellan, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imposing structure on Smith-form decompositions of rational resampling matrices</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-04-01</date><risdate>1994</risdate><volume>42</volume><issue>4</issue><spage>970</spage><epage>973</epage><pages>970-973</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and /spl Lambda/ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992).< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.285665</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 1994-04, Vol.42 (4), p.970-973 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_28398683 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Convolution Detection, estimation, filtering, equalization, prediction Digital signal processing Exact sciences and technology Information, signal and communications theory Matrix decomposition Multidimensional signal processing Multidimensional systems Reduced instruction set computing Signal and communications theory Signal processing algorithms Signal sampling Signal, noise Speech processing Telecommunications and information theory Unmanned aerial vehicles |
title | Imposing structure on Smith-form decompositions of rational resampling matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imposing%20structure%20on%20Smith-form%20decompositions%20of%20rational%20resampling%20matrices&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Evans,%20B.L.&rft.date=1994-04-01&rft.volume=42&rft.issue=4&rft.spage=970&rft.epage=973&rft.pages=970-973&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.285665&rft_dat=%3Cproquest_RIE%3E28398683%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28398683&rft_id=info:pmid/&rft_ieee_id=285665&rfr_iscdi=true |