Imposing structure on Smith-form decompositions of rational resampling matrices

Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1994-04, Vol.42 (4), p.970-973
Hauptverfasser: Evans, B.L., Gardos, T.R., McClellan, J.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 973
container_issue 4
container_start_page 970
container_title IEEE transactions on signal processing
container_volume 42
creator Evans, B.L.
Gardos, T.R.
McClellan, J.H.
description Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and /spl Lambda/ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992).< >
doi_str_mv 10.1109/78.285665
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28398683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>285665</ieee_id><sourcerecordid>28398683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-18a61ac7fdd79a75edf113f51172f4b47783af95fca8d53943d39e0414762d2c3</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUwsDJlQEgMKXZsx_aIKj4qVeoASGzR4dhglMTBlw7896Sk6nRPut97p3uEXDK6YIyaO6UXhZZlKY_IjBnBcipUeTxqKnkutXo_JWeI35QyIUw5I5tV20cM3WeGQ9raYZtcFrvspQ3DV-5jarPa2fjPDCF2mEWfJdhJaLLkENq-2blbGFKwDs_JiYcG3cV-zsnb48Pr8jlfb55Wy_t1bjkth5xpKBlY5etaGVDS1Z4x7iVjqvDiQyilOXgjvQVdS24Er7lxVLDxm6IuLJ-Tmym3T_Fn63Co2oDWNQ10Lm6xKjQ3utR8BG8n0KaImJyv-hRaSL8Vo9WuskrpaqpsZK_3oYAWGp-gswEPhvE6N0qM2NWEBefcYbvP-APzdHQr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28398683</pqid></control><display><type>article</type><title>Imposing structure on Smith-form decompositions of rational resampling matrices</title><source>IEEE Electronic Library (IEL)</source><creator>Evans, B.L. ; Gardos, T.R. ; McClellan, J.H.</creator><creatorcontrib>Evans, B.L. ; Gardos, T.R. ; McClellan, J.H.</creatorcontrib><description>Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and /spl Lambda/ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992).&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.285665</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Convolution ; Detection, estimation, filtering, equalization, prediction ; Digital signal processing ; Exact sciences and technology ; Information, signal and communications theory ; Matrix decomposition ; Multidimensional signal processing ; Multidimensional systems ; Reduced instruction set computing ; Signal and communications theory ; Signal processing algorithms ; Signal sampling ; Signal, noise ; Speech processing ; Telecommunications and information theory ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on signal processing, 1994-04, Vol.42 (4), p.970-973</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-18a61ac7fdd79a75edf113f51172f4b47783af95fca8d53943d39e0414762d2c3</citedby><cites>FETCH-LOGICAL-c306t-18a61ac7fdd79a75edf113f51172f4b47783af95fca8d53943d39e0414762d2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/285665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/285665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4143974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, B.L.</creatorcontrib><creatorcontrib>Gardos, T.R.</creatorcontrib><creatorcontrib>McClellan, J.H.</creatorcontrib><title>Imposing structure on Smith-form decompositions of rational resampling matrices</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and /spl Lambda/ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992).&lt; &gt;</description><subject>Applied sciences</subject><subject>Convolution</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital signal processing</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Matrix decomposition</subject><subject>Multidimensional signal processing</subject><subject>Multidimensional systems</subject><subject>Reduced instruction set computing</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal sampling</subject><subject>Signal, noise</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><subject>Unmanned aerial vehicles</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqUwsDJlQEgMKXZsx_aIKj4qVeoASGzR4dhglMTBlw7896Sk6nRPut97p3uEXDK6YIyaO6UXhZZlKY_IjBnBcipUeTxqKnkutXo_JWeI35QyIUw5I5tV20cM3WeGQ9raYZtcFrvspQ3DV-5jarPa2fjPDCF2mEWfJdhJaLLkENq-2blbGFKwDs_JiYcG3cV-zsnb48Pr8jlfb55Wy_t1bjkth5xpKBlY5etaGVDS1Z4x7iVjqvDiQyilOXgjvQVdS24Er7lxVLDxm6IuLJ-Tmym3T_Fn63Co2oDWNQ10Lm6xKjQ3utR8BG8n0KaImJyv-hRaSL8Vo9WuskrpaqpsZK_3oYAWGp-gswEPhvE6N0qM2NWEBefcYbvP-APzdHQr</recordid><startdate>19940401</startdate><enddate>19940401</enddate><creator>Evans, B.L.</creator><creator>Gardos, T.R.</creator><creator>McClellan, J.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940401</creationdate><title>Imposing structure on Smith-form decompositions of rational resampling matrices</title><author>Evans, B.L. ; Gardos, T.R. ; McClellan, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-18a61ac7fdd79a75edf113f51172f4b47783af95fca8d53943d39e0414762d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Convolution</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital signal processing</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Matrix decomposition</topic><topic>Multidimensional signal processing</topic><topic>Multidimensional systems</topic><topic>Reduced instruction set computing</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal sampling</topic><topic>Signal, noise</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, B.L.</creatorcontrib><creatorcontrib>Gardos, T.R.</creatorcontrib><creatorcontrib>McClellan, J.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Evans, B.L.</au><au>Gardos, T.R.</au><au>McClellan, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imposing structure on Smith-form decompositions of rational resampling matrices</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-04-01</date><risdate>1994</risdate><volume>42</volume><issue>4</issue><spage>970</spage><epage>973</epage><pages>970-973</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Imposing structure on the Smith form of an (integer) periodicity matrix N=U/spl Lambda/V leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and /spl Lambda/ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992).&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.285665</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1994-04, Vol.42 (4), p.970-973
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28398683
source IEEE Electronic Library (IEL)
subjects Applied sciences
Convolution
Detection, estimation, filtering, equalization, prediction
Digital signal processing
Exact sciences and technology
Information, signal and communications theory
Matrix decomposition
Multidimensional signal processing
Multidimensional systems
Reduced instruction set computing
Signal and communications theory
Signal processing algorithms
Signal sampling
Signal, noise
Speech processing
Telecommunications and information theory
Unmanned aerial vehicles
title Imposing structure on Smith-form decompositions of rational resampling matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imposing%20structure%20on%20Smith-form%20decompositions%20of%20rational%20resampling%20matrices&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Evans,%20B.L.&rft.date=1994-04-01&rft.volume=42&rft.issue=4&rft.spage=970&rft.epage=973&rft.pages=970-973&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.285665&rft_dat=%3Cproquest_RIE%3E28398683%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28398683&rft_id=info:pmid/&rft_ieee_id=285665&rfr_iscdi=true