Ultra-Broad Linear Range and Sensitive Flexible Piezoresistive Sensor Using Reversed Lattice Structure for Wearable Electronics

Flexible pressure sensors have attracted significant attention owing to their broad applicability in wearable electronics and human–machine interfaces. However, it is still challenging to simultaneously achieve a broad sensing range and high linearity. Here, we present a reversed lattice structure (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-07, Vol.15 (28), p.34120-34131
Hauptverfasser: Bang, Joohyung, Chun, Byungkwon, Lim, Jaeyoung, Han, Yongha, So, Hongyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34131
container_issue 28
container_start_page 34120
container_title ACS applied materials & interfaces
container_volume 15
creator Bang, Joohyung
Chun, Byungkwon
Lim, Jaeyoung
Han, Yongha
So, Hongyun
description Flexible pressure sensors have attracted significant attention owing to their broad applicability in wearable electronics and human–machine interfaces. However, it is still challenging to simultaneously achieve a broad sensing range and high linearity. Here, we present a reversed lattice structure (RLS) piezoresistive sensor obtained through a layer-level engineered additive infill structure via conventional fused deposition modeling three-dimensional (3D) printing. The optimized RLS piezoresistive sensor attained a pressure sensing range (0.03–1630 kPa) with high linearity (coefficient of determination, R 2 = 0.998) and sensitivity (1.26 kPa–1) due to the structurally enhanced compressibility and spontaneous transition of dominant sensing mechanism of the sensor. It also exhibited great mechanical/electrical durability and a rapid response/recovery time (170/70 ms). This remarkable performance enables the detection of various human motions over a broad spectrum, from pulse detection to human walking. Finally, a wearable electronic glove was developed to analyze the pressure distribution in various situations, thereby demonstrating its applicability in multipurpose wearable electronics.
doi_str_mv 10.1021/acsami.3c07554
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2839739113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839739113</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-8468bd80e71a8fff2a4e4391188802c7a63aef7a376dedad0e31163fc71674533</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMo1q-rR8lRhK3JJrtJj1rqBxQUtXhcptlZiWx3a5It6sW_btZWb55mmHnmgXkJOeZsyFnKz8F4WNihMExlmdwie3wkZaLTLN3-66UckH3vXxnLRcqyXTIQSgqeC7lHvmZ1cJBcuhZKOrUNgqMP0Lwghaakj9h4G-wK6VWN73ZeI723-Nk69Nb_zHuidXTmbfNCH3CFzmMUQQjWxG1wnQmdQ1pF6DnKoXdMajTBtY01_pDsVFB7PNrUAzK7mjyNb5Lp3fXt-GKagBAsJFrmel5qhoqDrqoqBYlSjDjXWrPUKMgFYKVAqLzEEkqGgscHK6N4rmQmxAE5XXuXrn3r0IdiYb3BuoYG284XqRYj1Qt7dLhGjWu9d1gVS2cX4D4Kzoo-9GIderEJPR6cbNzdfIHlH_6bcgTO1kA8LF7bzjXx1f9s3w8bjhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839739113</pqid></control><display><type>article</type><title>Ultra-Broad Linear Range and Sensitive Flexible Piezoresistive Sensor Using Reversed Lattice Structure for Wearable Electronics</title><source>American Chemical Society Journals</source><creator>Bang, Joohyung ; Chun, Byungkwon ; Lim, Jaeyoung ; Han, Yongha ; So, Hongyun</creator><creatorcontrib>Bang, Joohyung ; Chun, Byungkwon ; Lim, Jaeyoung ; Han, Yongha ; So, Hongyun</creatorcontrib><description>Flexible pressure sensors have attracted significant attention owing to their broad applicability in wearable electronics and human–machine interfaces. However, it is still challenging to simultaneously achieve a broad sensing range and high linearity. Here, we present a reversed lattice structure (RLS) piezoresistive sensor obtained through a layer-level engineered additive infill structure via conventional fused deposition modeling three-dimensional (3D) printing. The optimized RLS piezoresistive sensor attained a pressure sensing range (0.03–1630 kPa) with high linearity (coefficient of determination, R 2 = 0.998) and sensitivity (1.26 kPa–1) due to the structurally enhanced compressibility and spontaneous transition of dominant sensing mechanism of the sensor. It also exhibited great mechanical/electrical durability and a rapid response/recovery time (170/70 ms). This remarkable performance enables the detection of various human motions over a broad spectrum, from pulse detection to human walking. Finally, a wearable electronic glove was developed to analyze the pressure distribution in various situations, thereby demonstrating its applicability in multipurpose wearable electronics.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c07554</identifier><identifier>PMID: 37431634</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials &amp; interfaces, 2023-07, Vol.15 (28), p.34120-34131</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-8468bd80e71a8fff2a4e4391188802c7a63aef7a376dedad0e31163fc71674533</citedby><cites>FETCH-LOGICAL-a330t-8468bd80e71a8fff2a4e4391188802c7a63aef7a376dedad0e31163fc71674533</cites><orcidid>0000-0001-9205-4986 ; 0000-0003-3870-388X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c07554$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c07554$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37431634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bang, Joohyung</creatorcontrib><creatorcontrib>Chun, Byungkwon</creatorcontrib><creatorcontrib>Lim, Jaeyoung</creatorcontrib><creatorcontrib>Han, Yongha</creatorcontrib><creatorcontrib>So, Hongyun</creatorcontrib><title>Ultra-Broad Linear Range and Sensitive Flexible Piezoresistive Sensor Using Reversed Lattice Structure for Wearable Electronics</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Flexible pressure sensors have attracted significant attention owing to their broad applicability in wearable electronics and human–machine interfaces. However, it is still challenging to simultaneously achieve a broad sensing range and high linearity. Here, we present a reversed lattice structure (RLS) piezoresistive sensor obtained through a layer-level engineered additive infill structure via conventional fused deposition modeling three-dimensional (3D) printing. The optimized RLS piezoresistive sensor attained a pressure sensing range (0.03–1630 kPa) with high linearity (coefficient of determination, R 2 = 0.998) and sensitivity (1.26 kPa–1) due to the structurally enhanced compressibility and spontaneous transition of dominant sensing mechanism of the sensor. It also exhibited great mechanical/electrical durability and a rapid response/recovery time (170/70 ms). This remarkable performance enables the detection of various human motions over a broad spectrum, from pulse detection to human walking. Finally, a wearable electronic glove was developed to analyze the pressure distribution in various situations, thereby demonstrating its applicability in multipurpose wearable electronics.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMo1q-rR8lRhK3JJrtJj1rqBxQUtXhcptlZiWx3a5It6sW_btZWb55mmHnmgXkJOeZsyFnKz8F4WNihMExlmdwie3wkZaLTLN3-66UckH3vXxnLRcqyXTIQSgqeC7lHvmZ1cJBcuhZKOrUNgqMP0Lwghaakj9h4G-wK6VWN73ZeI723-Nk69Nb_zHuidXTmbfNCH3CFzmMUQQjWxG1wnQmdQ1pF6DnKoXdMajTBtY01_pDsVFB7PNrUAzK7mjyNb5Lp3fXt-GKagBAsJFrmel5qhoqDrqoqBYlSjDjXWrPUKMgFYKVAqLzEEkqGgscHK6N4rmQmxAE5XXuXrn3r0IdiYb3BuoYG284XqRYj1Qt7dLhGjWu9d1gVS2cX4D4Kzoo-9GIderEJPR6cbNzdfIHlH_6bcgTO1kA8LF7bzjXx1f9s3w8bjhY</recordid><startdate>20230719</startdate><enddate>20230719</enddate><creator>Bang, Joohyung</creator><creator>Chun, Byungkwon</creator><creator>Lim, Jaeyoung</creator><creator>Han, Yongha</creator><creator>So, Hongyun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9205-4986</orcidid><orcidid>https://orcid.org/0000-0003-3870-388X</orcidid></search><sort><creationdate>20230719</creationdate><title>Ultra-Broad Linear Range and Sensitive Flexible Piezoresistive Sensor Using Reversed Lattice Structure for Wearable Electronics</title><author>Bang, Joohyung ; Chun, Byungkwon ; Lim, Jaeyoung ; Han, Yongha ; So, Hongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-8468bd80e71a8fff2a4e4391188802c7a63aef7a376dedad0e31163fc71674533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bang, Joohyung</creatorcontrib><creatorcontrib>Chun, Byungkwon</creatorcontrib><creatorcontrib>Lim, Jaeyoung</creatorcontrib><creatorcontrib>Han, Yongha</creatorcontrib><creatorcontrib>So, Hongyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bang, Joohyung</au><au>Chun, Byungkwon</au><au>Lim, Jaeyoung</au><au>Han, Yongha</au><au>So, Hongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Broad Linear Range and Sensitive Flexible Piezoresistive Sensor Using Reversed Lattice Structure for Wearable Electronics</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-07-19</date><risdate>2023</risdate><volume>15</volume><issue>28</issue><spage>34120</spage><epage>34131</epage><pages>34120-34131</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Flexible pressure sensors have attracted significant attention owing to their broad applicability in wearable electronics and human–machine interfaces. However, it is still challenging to simultaneously achieve a broad sensing range and high linearity. Here, we present a reversed lattice structure (RLS) piezoresistive sensor obtained through a layer-level engineered additive infill structure via conventional fused deposition modeling three-dimensional (3D) printing. The optimized RLS piezoresistive sensor attained a pressure sensing range (0.03–1630 kPa) with high linearity (coefficient of determination, R 2 = 0.998) and sensitivity (1.26 kPa–1) due to the structurally enhanced compressibility and spontaneous transition of dominant sensing mechanism of the sensor. It also exhibited great mechanical/electrical durability and a rapid response/recovery time (170/70 ms). This remarkable performance enables the detection of various human motions over a broad spectrum, from pulse detection to human walking. Finally, a wearable electronic glove was developed to analyze the pressure distribution in various situations, thereby demonstrating its applicability in multipurpose wearable electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37431634</pmid><doi>10.1021/acsami.3c07554</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9205-4986</orcidid><orcidid>https://orcid.org/0000-0003-3870-388X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-07, Vol.15 (28), p.34120-34131
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2839739113
source American Chemical Society Journals
subjects Applications of Polymer, Composite, and Coating Materials
title Ultra-Broad Linear Range and Sensitive Flexible Piezoresistive Sensor Using Reversed Lattice Structure for Wearable Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Broad%20Linear%20Range%20and%20Sensitive%20Flexible%20Piezoresistive%20Sensor%20Using%20Reversed%20Lattice%20Structure%20for%20Wearable%20Electronics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bang,%20Joohyung&rft.date=2023-07-19&rft.volume=15&rft.issue=28&rft.spage=34120&rft.epage=34131&rft.pages=34120-34131&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c07554&rft_dat=%3Cproquest_cross%3E2839739113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839739113&rft_id=info:pmid/37431634&rfr_iscdi=true