Incremental theory of diffraction: a new-improved formulation

In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2004-09, Vol.52 (9), p.2234-2243
Hauptverfasser: Tiberio, R., Toccafondi, A., Polemi, A., Maci, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2243
container_issue 9
container_start_page 2234
container_title IEEE transactions on antennas and propagation
container_volume 52
creator Tiberio, R.
Toccafondi, A.
Polemi, A.
Maci, S.
description In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generalization of the incremental theory of diffraction (ITD) localization process for uniform cylindrical, local canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution for the local canonical problem may also be represented as a spatial integral convolution along the longitudinal coordinates of the cylindrical configuration. Its integrand is then directly used to define the relevant incremental field contribution. For the sake of convenience, but without loss of generality, this procedure is illustrated for the case of local wedge configurations. Also, a specific suitable asymptotic analysis is developed to derive new closed form high-frequency expressions from the spectral integral formulation. These expressions for the incremental field contributions explicitly satisfy reciprocity and are applicable at any incidence and observation aspect. This generalization of the ITD localization process together with its more accurate asymptotic analysis provides a definite improvement of the method.
doi_str_mv 10.1109/TAP.2004.834142
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28397365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1331609</ieee_id><sourcerecordid>28397365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-865ed776dce78b00b7ddc773386764e3b1249a7843963f300a4d2828cea541e63</originalsourceid><addsrcrecordid>eNp9kLtLA0EQhxdRMEZrC5tDUKtL9nX7ECxC8BEIaBHBbtnszeGFe8TdOyX_vRsSCFhYDcN8M8zvQ-iS4BEhWI8Xk7cRxZiPFOOE0yM0IFmmUkopOUYDjIlKNRUfp-gshFVsueJ8gB5mjfNQQ9PZKuk-ofWbpC2SvCwKb11Xts19YpMGftKyXvv2G_KkaH3dV3Y7O0cnha0CXOzrEL0_PS6mL-n89Xk2ncxTx6TuUiUyyKUUuQOplhgvZZ47KRlTQgoObEko11YqzrRgBcPY8pwqqhzYjBMQbIjudnfjC189hM7UZXBQVbaBtg9GYyKxIgpH8vZfkiqmJRNZBK__gKu2901MYTTFSmkZuSEa7yDn2xA8FGbty9r6jSHYbK2baN1srZud9bhxsz9rg7NVlNi4MhzWRHw0ho7c1Y4rAeAwZowIrNkvzgKIpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920889797</pqid></control><display><type>article</type><title>Incremental theory of diffraction: a new-improved formulation</title><source>IEEE Electronic Library (IEL)</source><creator>Tiberio, R. ; Toccafondi, A. ; Polemi, A. ; Maci, S.</creator><creatorcontrib>Tiberio, R. ; Toccafondi, A. ; Polemi, A. ; Maci, S.</creatorcontrib><description>In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generalization of the incremental theory of diffraction (ITD) localization process for uniform cylindrical, local canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution for the local canonical problem may also be represented as a spatial integral convolution along the longitudinal coordinates of the cylindrical configuration. Its integrand is then directly used to define the relevant incremental field contribution. For the sake of convenience, but without loss of generality, this procedure is illustrated for the case of local wedge configurations. Also, a specific suitable asymptotic analysis is developed to derive new closed form high-frequency expressions from the spectral integral formulation. These expressions for the incremental field contributions explicitly satisfy reciprocity and are applicable at any incidence and observation aspect. This generalization of the ITD localization process together with its more accurate asymptotic analysis provides a definite improvement of the method.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2004.834142</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Convolution ; Diffraction ; Diffraction, scattering, reflection ; Exact sciences and technology ; Exact solutions ; Formulations ; Frequency ; Geometrical optics ; Integrals ; Lighting ; Localization ; Mathematical analysis ; Mathematical models ; Optical reflection ; Optical scattering ; Phase estimation ; Physical optics ; Physical theory of diffraction ; Radiocommunications ; Radiowave propagation ; Shadow mapping ; Spectra ; Studies ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2004-09, Vol.52 (9), p.2234-2243</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-865ed776dce78b00b7ddc773386764e3b1249a7843963f300a4d2828cea541e63</citedby><cites>FETCH-LOGICAL-c379t-865ed776dce78b00b7ddc773386764e3b1249a7843963f300a4d2828cea541e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1331609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1331609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16170676$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiberio, R.</creatorcontrib><creatorcontrib>Toccafondi, A.</creatorcontrib><creatorcontrib>Polemi, A.</creatorcontrib><creatorcontrib>Maci, S.</creatorcontrib><title>Incremental theory of diffraction: a new-improved formulation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generalization of the incremental theory of diffraction (ITD) localization process for uniform cylindrical, local canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution for the local canonical problem may also be represented as a spatial integral convolution along the longitudinal coordinates of the cylindrical configuration. Its integrand is then directly used to define the relevant incremental field contribution. For the sake of convenience, but without loss of generality, this procedure is illustrated for the case of local wedge configurations. Also, a specific suitable asymptotic analysis is developed to derive new closed form high-frequency expressions from the spectral integral formulation. These expressions for the incremental field contributions explicitly satisfy reciprocity and are applicable at any incidence and observation aspect. This generalization of the ITD localization process together with its more accurate asymptotic analysis provides a definite improvement of the method.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Convolution</subject><subject>Diffraction</subject><subject>Diffraction, scattering, reflection</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Formulations</subject><subject>Frequency</subject><subject>Geometrical optics</subject><subject>Integrals</subject><subject>Lighting</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optical reflection</subject><subject>Optical scattering</subject><subject>Phase estimation</subject><subject>Physical optics</subject><subject>Physical theory of diffraction</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Shadow mapping</subject><subject>Spectra</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kLtLA0EQhxdRMEZrC5tDUKtL9nX7ECxC8BEIaBHBbtnszeGFe8TdOyX_vRsSCFhYDcN8M8zvQ-iS4BEhWI8Xk7cRxZiPFOOE0yM0IFmmUkopOUYDjIlKNRUfp-gshFVsueJ8gB5mjfNQQ9PZKuk-ofWbpC2SvCwKb11Xts19YpMGftKyXvv2G_KkaH3dV3Y7O0cnha0CXOzrEL0_PS6mL-n89Xk2ncxTx6TuUiUyyKUUuQOplhgvZZ47KRlTQgoObEko11YqzrRgBcPY8pwqqhzYjBMQbIjudnfjC189hM7UZXBQVbaBtg9GYyKxIgpH8vZfkiqmJRNZBK__gKu2901MYTTFSmkZuSEa7yDn2xA8FGbty9r6jSHYbK2baN1srZud9bhxsz9rg7NVlNi4MhzWRHw0ho7c1Y4rAeAwZowIrNkvzgKIpw</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Tiberio, R.</creator><creator>Toccafondi, A.</creator><creator>Polemi, A.</creator><creator>Maci, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040901</creationdate><title>Incremental theory of diffraction: a new-improved formulation</title><author>Tiberio, R. ; Toccafondi, A. ; Polemi, A. ; Maci, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-865ed776dce78b00b7ddc773386764e3b1249a7843963f300a4d2828cea541e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Convolution</topic><topic>Diffraction</topic><topic>Diffraction, scattering, reflection</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Formulations</topic><topic>Frequency</topic><topic>Geometrical optics</topic><topic>Integrals</topic><topic>Lighting</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optical reflection</topic><topic>Optical scattering</topic><topic>Phase estimation</topic><topic>Physical optics</topic><topic>Physical theory of diffraction</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Shadow mapping</topic><topic>Spectra</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiberio, R.</creatorcontrib><creatorcontrib>Toccafondi, A.</creatorcontrib><creatorcontrib>Polemi, A.</creatorcontrib><creatorcontrib>Maci, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tiberio, R.</au><au>Toccafondi, A.</au><au>Polemi, A.</au><au>Maci, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental theory of diffraction: a new-improved formulation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2004-09-01</date><risdate>2004</risdate><volume>52</volume><issue>9</issue><spage>2234</spage><epage>2243</epage><pages>2234-2243</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generalization of the incremental theory of diffraction (ITD) localization process for uniform cylindrical, local canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution for the local canonical problem may also be represented as a spatial integral convolution along the longitudinal coordinates of the cylindrical configuration. Its integrand is then directly used to define the relevant incremental field contribution. For the sake of convenience, but without loss of generality, this procedure is illustrated for the case of local wedge configurations. Also, a specific suitable asymptotic analysis is developed to derive new closed form high-frequency expressions from the spectral integral formulation. These expressions for the incremental field contributions explicitly satisfy reciprocity and are applicable at any incidence and observation aspect. This generalization of the ITD localization process together with its more accurate asymptotic analysis provides a definite improvement of the method.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2004.834142</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2004-09, Vol.52 (9), p.2234-2243
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_miscellaneous_28397365
source IEEE Electronic Library (IEL)
subjects Applied sciences
Asymptotic properties
Convolution
Diffraction
Diffraction, scattering, reflection
Exact sciences and technology
Exact solutions
Formulations
Frequency
Geometrical optics
Integrals
Lighting
Localization
Mathematical analysis
Mathematical models
Optical reflection
Optical scattering
Phase estimation
Physical optics
Physical theory of diffraction
Radiocommunications
Radiowave propagation
Shadow mapping
Spectra
Studies
Telecommunications
Telecommunications and information theory
title Incremental theory of diffraction: a new-improved formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20theory%20of%20diffraction:%20a%20new-improved%20formulation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Tiberio,%20R.&rft.date=2004-09-01&rft.volume=52&rft.issue=9&rft.spage=2234&rft.epage=2243&rft.pages=2234-2243&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2004.834142&rft_dat=%3Cproquest_RIE%3E28397365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920889797&rft_id=info:pmid/&rft_ieee_id=1331609&rfr_iscdi=true