Incremental theory of diffraction: a new-improved formulation
In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generali...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2004-09, Vol.52 (9), p.2234-2243 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2243 |
---|---|
container_issue | 9 |
container_start_page | 2234 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 52 |
creator | Tiberio, R. Toccafondi, A. Polemi, A. Maci, S. |
description | In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generalization of the incremental theory of diffraction (ITD) localization process for uniform cylindrical, local canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution for the local canonical problem may also be represented as a spatial integral convolution along the longitudinal coordinates of the cylindrical configuration. Its integrand is then directly used to define the relevant incremental field contribution. For the sake of convenience, but without loss of generality, this procedure is illustrated for the case of local wedge configurations. Also, a specific suitable asymptotic analysis is developed to derive new closed form high-frequency expressions from the spectral integral formulation. These expressions for the incremental field contributions explicitly satisfy reciprocity and are applicable at any incidence and observation aspect. This generalization of the ITD localization process together with its more accurate asymptotic analysis provides a definite improvement of the method. |
doi_str_mv | 10.1109/TAP.2004.834142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28397365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1331609</ieee_id><sourcerecordid>28397365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-865ed776dce78b00b7ddc773386764e3b1249a7843963f300a4d2828cea541e63</originalsourceid><addsrcrecordid>eNp9kLtLA0EQhxdRMEZrC5tDUKtL9nX7ECxC8BEIaBHBbtnszeGFe8TdOyX_vRsSCFhYDcN8M8zvQ-iS4BEhWI8Xk7cRxZiPFOOE0yM0IFmmUkopOUYDjIlKNRUfp-gshFVsueJ8gB5mjfNQQ9PZKuk-ofWbpC2SvCwKb11Xts19YpMGftKyXvv2G_KkaH3dV3Y7O0cnha0CXOzrEL0_PS6mL-n89Xk2ncxTx6TuUiUyyKUUuQOplhgvZZ47KRlTQgoObEko11YqzrRgBcPY8pwqqhzYjBMQbIjudnfjC189hM7UZXBQVbaBtg9GYyKxIgpH8vZfkiqmJRNZBK__gKu2901MYTTFSmkZuSEa7yDn2xA8FGbty9r6jSHYbK2baN1srZud9bhxsz9rg7NVlNi4MhzWRHw0ho7c1Y4rAeAwZowIrNkvzgKIpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920889797</pqid></control><display><type>article</type><title>Incremental theory of diffraction: a new-improved formulation</title><source>IEEE Electronic Library (IEL)</source><creator>Tiberio, R. ; Toccafondi, A. ; Polemi, A. ; Maci, S.</creator><creatorcontrib>Tiberio, R. ; Toccafondi, A. ; Polemi, A. ; Maci, S.</creatorcontrib><description>In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generalization of the incremental theory of diffraction (ITD) localization process for uniform cylindrical, local canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution for the local canonical problem may also be represented as a spatial integral convolution along the longitudinal coordinates of the cylindrical configuration. Its integrand is then directly used to define the relevant incremental field contribution. For the sake of convenience, but without loss of generality, this procedure is illustrated for the case of local wedge configurations. Also, a specific suitable asymptotic analysis is developed to derive new closed form high-frequency expressions from the spectral integral formulation. These expressions for the incremental field contributions explicitly satisfy reciprocity and are applicable at any incidence and observation aspect. This generalization of the ITD localization process together with its more accurate asymptotic analysis provides a definite improvement of the method.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2004.834142</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Convolution ; Diffraction ; Diffraction, scattering, reflection ; Exact sciences and technology ; Exact solutions ; Formulations ; Frequency ; Geometrical optics ; Integrals ; Lighting ; Localization ; Mathematical analysis ; Mathematical models ; Optical reflection ; Optical scattering ; Phase estimation ; Physical optics ; Physical theory of diffraction ; Radiocommunications ; Radiowave propagation ; Shadow mapping ; Spectra ; Studies ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2004-09, Vol.52 (9), p.2234-2243</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-865ed776dce78b00b7ddc773386764e3b1249a7843963f300a4d2828cea541e63</citedby><cites>FETCH-LOGICAL-c379t-865ed776dce78b00b7ddc773386764e3b1249a7843963f300a4d2828cea541e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1331609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1331609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16170676$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiberio, R.</creatorcontrib><creatorcontrib>Toccafondi, A.</creatorcontrib><creatorcontrib>Polemi, A.</creatorcontrib><creatorcontrib>Maci, S.</creatorcontrib><title>Incremental theory of diffraction: a new-improved formulation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generalization of the incremental theory of diffraction (ITD) localization process for uniform cylindrical, local canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution for the local canonical problem may also be represented as a spatial integral convolution along the longitudinal coordinates of the cylindrical configuration. Its integrand is then directly used to define the relevant incremental field contribution. For the sake of convenience, but without loss of generality, this procedure is illustrated for the case of local wedge configurations. Also, a specific suitable asymptotic analysis is developed to derive new closed form high-frequency expressions from the spectral integral formulation. These expressions for the incremental field contributions explicitly satisfy reciprocity and are applicable at any incidence and observation aspect. This generalization of the ITD localization process together with its more accurate asymptotic analysis provides a definite improvement of the method.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Convolution</subject><subject>Diffraction</subject><subject>Diffraction, scattering, reflection</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Formulations</subject><subject>Frequency</subject><subject>Geometrical optics</subject><subject>Integrals</subject><subject>Lighting</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optical reflection</subject><subject>Optical scattering</subject><subject>Phase estimation</subject><subject>Physical optics</subject><subject>Physical theory of diffraction</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Shadow mapping</subject><subject>Spectra</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kLtLA0EQhxdRMEZrC5tDUKtL9nX7ECxC8BEIaBHBbtnszeGFe8TdOyX_vRsSCFhYDcN8M8zvQ-iS4BEhWI8Xk7cRxZiPFOOE0yM0IFmmUkopOUYDjIlKNRUfp-gshFVsueJ8gB5mjfNQQ9PZKuk-ofWbpC2SvCwKb11Xts19YpMGftKyXvv2G_KkaH3dV3Y7O0cnha0CXOzrEL0_PS6mL-n89Xk2ncxTx6TuUiUyyKUUuQOplhgvZZ47KRlTQgoObEko11YqzrRgBcPY8pwqqhzYjBMQbIjudnfjC189hM7UZXBQVbaBtg9GYyKxIgpH8vZfkiqmJRNZBK__gKu2901MYTTFSmkZuSEa7yDn2xA8FGbty9r6jSHYbK2baN1srZud9bhxsz9rg7NVlNi4MhzWRHw0ho7c1Y4rAeAwZowIrNkvzgKIpw</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Tiberio, R.</creator><creator>Toccafondi, A.</creator><creator>Polemi, A.</creator><creator>Maci, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040901</creationdate><title>Incremental theory of diffraction: a new-improved formulation</title><author>Tiberio, R. ; Toccafondi, A. ; Polemi, A. ; Maci, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-865ed776dce78b00b7ddc773386764e3b1249a7843963f300a4d2828cea541e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Convolution</topic><topic>Diffraction</topic><topic>Diffraction, scattering, reflection</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Formulations</topic><topic>Frequency</topic><topic>Geometrical optics</topic><topic>Integrals</topic><topic>Lighting</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optical reflection</topic><topic>Optical scattering</topic><topic>Phase estimation</topic><topic>Physical optics</topic><topic>Physical theory of diffraction</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Shadow mapping</topic><topic>Spectra</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiberio, R.</creatorcontrib><creatorcontrib>Toccafondi, A.</creatorcontrib><creatorcontrib>Polemi, A.</creatorcontrib><creatorcontrib>Maci, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tiberio, R.</au><au>Toccafondi, A.</au><au>Polemi, A.</au><au>Maci, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incremental theory of diffraction: a new-improved formulation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2004-09-01</date><risdate>2004</risdate><volume>52</volume><issue>9</issue><spage>2234</spage><epage>2243</epage><pages>2234-2243</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>In this paper, a general systematic procedure is presented for defining incremental field contributions. They may provide effective tools to describe a wide class of scattering and diffraction phenomena at any aspect, within a unitary, self-consistent framework. This procedure is based on a generalization of the incremental theory of diffraction (ITD) localization process for uniform cylindrical, local canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution for the local canonical problem may also be represented as a spatial integral convolution along the longitudinal coordinates of the cylindrical configuration. Its integrand is then directly used to define the relevant incremental field contribution. For the sake of convenience, but without loss of generality, this procedure is illustrated for the case of local wedge configurations. Also, a specific suitable asymptotic analysis is developed to derive new closed form high-frequency expressions from the spectral integral formulation. These expressions for the incremental field contributions explicitly satisfy reciprocity and are applicable at any incidence and observation aspect. This generalization of the ITD localization process together with its more accurate asymptotic analysis provides a definite improvement of the method.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2004.834142</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2004-09, Vol.52 (9), p.2234-2243 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_miscellaneous_28397365 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Asymptotic properties Convolution Diffraction Diffraction, scattering, reflection Exact sciences and technology Exact solutions Formulations Frequency Geometrical optics Integrals Lighting Localization Mathematical analysis Mathematical models Optical reflection Optical scattering Phase estimation Physical optics Physical theory of diffraction Radiocommunications Radiowave propagation Shadow mapping Spectra Studies Telecommunications Telecommunications and information theory |
title | Incremental theory of diffraction: a new-improved formulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incremental%20theory%20of%20diffraction:%20a%20new-improved%20formulation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Tiberio,%20R.&rft.date=2004-09-01&rft.volume=52&rft.issue=9&rft.spage=2234&rft.epage=2243&rft.pages=2234-2243&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2004.834142&rft_dat=%3Cproquest_RIE%3E28397365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920889797&rft_id=info:pmid/&rft_ieee_id=1331609&rfr_iscdi=true |