Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy
Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10 18 cm −2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also perfor...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2004-08, Vol.186 (1), p.248-254 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 1 |
container_start_page | 248 |
container_title | Surface & coatings technology |
container_volume | 186 |
creator | Tóth, A Mohai, M Ujvári, T Bell, T Dong, H Bertóti, I |
description | Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10
18 cm
−2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also performed. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS, X-ray diffraction (XRD) analysis and nanoindentation measurements.
According to XPS, surface oxidation and strong surface enrichment of Al occurred on the Ti-alloys after both the “non-equilibrium” PIII treatment and the “equilibrium” TO treatment. After the air PIII treatment Ti and Al were present in fully oxidized (TiO
2 and Al
2O
3) states, and neither nitrogen nor vanadium could be detected in the topmost layer. XRD showed the formation of rutile and substoichiometric TiO
2−
x
phases on the PIII-treated Ti and TO-treated Ti-alloy, but no crystalline oxide phase was found on the PIII-treated Ti-alloy. The surface hardness and the scratch resistance of the samples increased significantly after PIII treatment. The surface hardening and the improved scratch resistance of the oxidized Ti-alloy samples can be explained mainly by the surface segregation of Al and the formation of a layer containing oxidized Ti and Al. |
doi_str_mv | 10.1016/j.surfcoat.2004.04.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28393689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897204002774</els_id><sourcerecordid>28393689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-ef8bbb04b2dff13a432d908afd70483e435747cee8bee9cf23d3a49899e38baa3</originalsourceid><addsrcrecordid>eNqFkN9LwzAQx4MoOKf_gvRF31qTJl2SN2X4YzCY4HwO1_TCMrp2Jp3gf29rJz4KBwfH53vHfQi5ZjRjlM3utlk8BGdb6LKcUpENxdkJmTAldcq5kKdkQvNCpkrL_JxcxLillDKpxYSs3vosWEzsBnfeQp1AUyUNNO0O7QaacRT3aLuYtC4BH5LXxWKRdgGhwypZ-5_E2qdQ1-3XJTlzUEe8OvYpeX96XM9f0uXqeTF_WKZWMNql6FRZllSUeeUc4yB4XmmqwFWSCsVR8EIKaRFViaity3nVQ1ppjVyVAHxKbse9-9B-HDB2ZuejxbqGBttDNLnims-U7sHZCNrQxhjQmX3wOwhfhlEz-DNb8-vPDP7MUJz1wZvjBYi9BBegsT7-pQstC6YH7n7ksH_302Mw0XpsLFY-9NZM1fr_Tn0D0rGKLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28393689</pqid></control><display><type>article</type><title>Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy</title><source>Elsevier ScienceDirect Journals</source><creator>Tóth, A ; Mohai, M ; Ujvári, T ; Bell, T ; Dong, H ; Bertóti, I</creator><creatorcontrib>Tóth, A ; Mohai, M ; Ujvári, T ; Bell, T ; Dong, H ; Bertóti, I</creatorcontrib><description>Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10
18 cm
−2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also performed. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS, X-ray diffraction (XRD) analysis and nanoindentation measurements.
According to XPS, surface oxidation and strong surface enrichment of Al occurred on the Ti-alloys after both the “non-equilibrium” PIII treatment and the “equilibrium” TO treatment. After the air PIII treatment Ti and Al were present in fully oxidized (TiO
2 and Al
2O
3) states, and neither nitrogen nor vanadium could be detected in the topmost layer. XRD showed the formation of rutile and substoichiometric TiO
2−
x
phases on the PIII-treated Ti and TO-treated Ti-alloy, but no crystalline oxide phase was found on the PIII-treated Ti-alloy. The surface hardness and the scratch resistance of the samples increased significantly after PIII treatment. The surface hardening and the improved scratch resistance of the oxidized Ti-alloy samples can be explained mainly by the surface segregation of Al and the formation of a layer containing oxidized Ti and Al.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2004.04.031</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Metals. Metallurgy ; Nanomechanical properties ; Production techniques ; Surface treatment ; Ti6Al4V ; XPS ; XRD</subject><ispartof>Surface & coatings technology, 2004-08, Vol.186 (1), p.248-254</ispartof><rights>2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-ef8bbb04b2dff13a432d908afd70483e435747cee8bee9cf23d3a49899e38baa3</citedby><cites>FETCH-LOGICAL-c410t-ef8bbb04b2dff13a432d908afd70483e435747cee8bee9cf23d3a49899e38baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897204002774$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15975191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tóth, A</creatorcontrib><creatorcontrib>Mohai, M</creatorcontrib><creatorcontrib>Ujvári, T</creatorcontrib><creatorcontrib>Bell, T</creatorcontrib><creatorcontrib>Dong, H</creatorcontrib><creatorcontrib>Bertóti, I</creatorcontrib><title>Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy</title><title>Surface & coatings technology</title><description>Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10
18 cm
−2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also performed. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS, X-ray diffraction (XRD) analysis and nanoindentation measurements.
According to XPS, surface oxidation and strong surface enrichment of Al occurred on the Ti-alloys after both the “non-equilibrium” PIII treatment and the “equilibrium” TO treatment. After the air PIII treatment Ti and Al were present in fully oxidized (TiO
2 and Al
2O
3) states, and neither nitrogen nor vanadium could be detected in the topmost layer. XRD showed the formation of rutile and substoichiometric TiO
2−
x
phases on the PIII-treated Ti and TO-treated Ti-alloy, but no crystalline oxide phase was found on the PIII-treated Ti-alloy. The surface hardness and the scratch resistance of the samples increased significantly after PIII treatment. The surface hardening and the improved scratch resistance of the oxidized Ti-alloy samples can be explained mainly by the surface segregation of Al and the formation of a layer containing oxidized Ti and Al.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Metals. Metallurgy</subject><subject>Nanomechanical properties</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Ti6Al4V</subject><subject>XPS</subject><subject>XRD</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkN9LwzAQx4MoOKf_gvRF31qTJl2SN2X4YzCY4HwO1_TCMrp2Jp3gf29rJz4KBwfH53vHfQi5ZjRjlM3utlk8BGdb6LKcUpENxdkJmTAldcq5kKdkQvNCpkrL_JxcxLillDKpxYSs3vosWEzsBnfeQp1AUyUNNO0O7QaacRT3aLuYtC4BH5LXxWKRdgGhwypZ-5_E2qdQ1-3XJTlzUEe8OvYpeX96XM9f0uXqeTF_WKZWMNql6FRZllSUeeUc4yB4XmmqwFWSCsVR8EIKaRFViaity3nVQ1ppjVyVAHxKbse9-9B-HDB2ZuejxbqGBttDNLnims-U7sHZCNrQxhjQmX3wOwhfhlEz-DNb8-vPDP7MUJz1wZvjBYi9BBegsT7-pQstC6YH7n7ksH_302Mw0XpsLFY-9NZM1fr_Tn0D0rGKLw</recordid><startdate>20040802</startdate><enddate>20040802</enddate><creator>Tóth, A</creator><creator>Mohai, M</creator><creator>Ujvári, T</creator><creator>Bell, T</creator><creator>Dong, H</creator><creator>Bertóti, I</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20040802</creationdate><title>Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy</title><author>Tóth, A ; Mohai, M ; Ujvári, T ; Bell, T ; Dong, H ; Bertóti, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-ef8bbb04b2dff13a432d908afd70483e435747cee8bee9cf23d3a49899e38baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Metals. Metallurgy</topic><topic>Nanomechanical properties</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Ti6Al4V</topic><topic>XPS</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tóth, A</creatorcontrib><creatorcontrib>Mohai, M</creatorcontrib><creatorcontrib>Ujvári, T</creatorcontrib><creatorcontrib>Bell, T</creatorcontrib><creatorcontrib>Dong, H</creatorcontrib><creatorcontrib>Bertóti, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tóth, A</au><au>Mohai, M</au><au>Ujvári, T</au><au>Bell, T</au><au>Dong, H</au><au>Bertóti, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy</atitle><jtitle>Surface & coatings technology</jtitle><date>2004-08-02</date><risdate>2004</risdate><volume>186</volume><issue>1</issue><spage>248</spage><epage>254</epage><pages>248-254</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10
18 cm
−2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also performed. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS, X-ray diffraction (XRD) analysis and nanoindentation measurements.
According to XPS, surface oxidation and strong surface enrichment of Al occurred on the Ti-alloys after both the “non-equilibrium” PIII treatment and the “equilibrium” TO treatment. After the air PIII treatment Ti and Al were present in fully oxidized (TiO
2 and Al
2O
3) states, and neither nitrogen nor vanadium could be detected in the topmost layer. XRD showed the formation of rutile and substoichiometric TiO
2−
x
phases on the PIII-treated Ti and TO-treated Ti-alloy, but no crystalline oxide phase was found on the PIII-treated Ti-alloy. The surface hardness and the scratch resistance of the samples increased significantly after PIII treatment. The surface hardening and the improved scratch resistance of the oxidized Ti-alloy samples can be explained mainly by the surface segregation of Al and the formation of a layer containing oxidized Ti and Al.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2004.04.031</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2004-08, Vol.186 (1), p.248-254 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_28393689 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Exact sciences and technology Metals. Metallurgy Nanomechanical properties Production techniques Surface treatment Ti6Al4V XPS XRD |
title | Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20chemical%20and%20nanomechanical%20aspects%20of%20air%20PIII-treated%20Ti%20and%20Ti-alloy&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=T%C3%B3th,%20A&rft.date=2004-08-02&rft.volume=186&rft.issue=1&rft.spage=248&rft.epage=254&rft.pages=248-254&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2004.04.031&rft_dat=%3Cproquest_cross%3E28393689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28393689&rft_id=info:pmid/&rft_els_id=S0257897204002774&rfr_iscdi=true |