Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy

Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10 18 cm −2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2004-08, Vol.186 (1), p.248-254
Hauptverfasser: Tóth, A, Mohai, M, Ujvári, T, Bell, T, Dong, H, Bertóti, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 1
container_start_page 248
container_title Surface & coatings technology
container_volume 186
creator Tóth, A
Mohai, M
Ujvári, T
Bell, T
Dong, H
Bertóti, I
description Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10 18 cm −2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also performed. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS, X-ray diffraction (XRD) analysis and nanoindentation measurements. According to XPS, surface oxidation and strong surface enrichment of Al occurred on the Ti-alloys after both the “non-equilibrium” PIII treatment and the “equilibrium” TO treatment. After the air PIII treatment Ti and Al were present in fully oxidized (TiO 2 and Al 2O 3) states, and neither nitrogen nor vanadium could be detected in the topmost layer. XRD showed the formation of rutile and substoichiometric TiO 2− x phases on the PIII-treated Ti and TO-treated Ti-alloy, but no crystalline oxide phase was found on the PIII-treated Ti-alloy. The surface hardness and the scratch resistance of the samples increased significantly after PIII treatment. The surface hardening and the improved scratch resistance of the oxidized Ti-alloy samples can be explained mainly by the surface segregation of Al and the formation of a layer containing oxidized Ti and Al.
doi_str_mv 10.1016/j.surfcoat.2004.04.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28393689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897204002774</els_id><sourcerecordid>28393689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-ef8bbb04b2dff13a432d908afd70483e435747cee8bee9cf23d3a49899e38baa3</originalsourceid><addsrcrecordid>eNqFkN9LwzAQx4MoOKf_gvRF31qTJl2SN2X4YzCY4HwO1_TCMrp2Jp3gf29rJz4KBwfH53vHfQi5ZjRjlM3utlk8BGdb6LKcUpENxdkJmTAldcq5kKdkQvNCpkrL_JxcxLillDKpxYSs3vosWEzsBnfeQp1AUyUNNO0O7QaacRT3aLuYtC4BH5LXxWKRdgGhwypZ-5_E2qdQ1-3XJTlzUEe8OvYpeX96XM9f0uXqeTF_WKZWMNql6FRZllSUeeUc4yB4XmmqwFWSCsVR8EIKaRFViaity3nVQ1ppjVyVAHxKbse9-9B-HDB2ZuejxbqGBttDNLnims-U7sHZCNrQxhjQmX3wOwhfhlEz-DNb8-vPDP7MUJz1wZvjBYi9BBegsT7-pQstC6YH7n7ksH_302Mw0XpsLFY-9NZM1fr_Tn0D0rGKLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28393689</pqid></control><display><type>article</type><title>Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy</title><source>Elsevier ScienceDirect Journals</source><creator>Tóth, A ; Mohai, M ; Ujvári, T ; Bell, T ; Dong, H ; Bertóti, I</creator><creatorcontrib>Tóth, A ; Mohai, M ; Ujvári, T ; Bell, T ; Dong, H ; Bertóti, I</creatorcontrib><description>Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10 18 cm −2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also performed. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS, X-ray diffraction (XRD) analysis and nanoindentation measurements. According to XPS, surface oxidation and strong surface enrichment of Al occurred on the Ti-alloys after both the “non-equilibrium” PIII treatment and the “equilibrium” TO treatment. After the air PIII treatment Ti and Al were present in fully oxidized (TiO 2 and Al 2O 3) states, and neither nitrogen nor vanadium could be detected in the topmost layer. XRD showed the formation of rutile and substoichiometric TiO 2− x phases on the PIII-treated Ti and TO-treated Ti-alloy, but no crystalline oxide phase was found on the PIII-treated Ti-alloy. The surface hardness and the scratch resistance of the samples increased significantly after PIII treatment. The surface hardening and the improved scratch resistance of the oxidized Ti-alloy samples can be explained mainly by the surface segregation of Al and the formation of a layer containing oxidized Ti and Al.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2004.04.031</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Metals. Metallurgy ; Nanomechanical properties ; Production techniques ; Surface treatment ; Ti6Al4V ; XPS ; XRD</subject><ispartof>Surface &amp; coatings technology, 2004-08, Vol.186 (1), p.248-254</ispartof><rights>2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-ef8bbb04b2dff13a432d908afd70483e435747cee8bee9cf23d3a49899e38baa3</citedby><cites>FETCH-LOGICAL-c410t-ef8bbb04b2dff13a432d908afd70483e435747cee8bee9cf23d3a49899e38baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897204002774$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15975191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tóth, A</creatorcontrib><creatorcontrib>Mohai, M</creatorcontrib><creatorcontrib>Ujvári, T</creatorcontrib><creatorcontrib>Bell, T</creatorcontrib><creatorcontrib>Dong, H</creatorcontrib><creatorcontrib>Bertóti, I</creatorcontrib><title>Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy</title><title>Surface &amp; coatings technology</title><description>Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10 18 cm −2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also performed. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS, X-ray diffraction (XRD) analysis and nanoindentation measurements. According to XPS, surface oxidation and strong surface enrichment of Al occurred on the Ti-alloys after both the “non-equilibrium” PIII treatment and the “equilibrium” TO treatment. After the air PIII treatment Ti and Al were present in fully oxidized (TiO 2 and Al 2O 3) states, and neither nitrogen nor vanadium could be detected in the topmost layer. XRD showed the formation of rutile and substoichiometric TiO 2− x phases on the PIII-treated Ti and TO-treated Ti-alloy, but no crystalline oxide phase was found on the PIII-treated Ti-alloy. The surface hardness and the scratch resistance of the samples increased significantly after PIII treatment. The surface hardening and the improved scratch resistance of the oxidized Ti-alloy samples can be explained mainly by the surface segregation of Al and the formation of a layer containing oxidized Ti and Al.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Metals. Metallurgy</subject><subject>Nanomechanical properties</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Ti6Al4V</subject><subject>XPS</subject><subject>XRD</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkN9LwzAQx4MoOKf_gvRF31qTJl2SN2X4YzCY4HwO1_TCMrp2Jp3gf29rJz4KBwfH53vHfQi5ZjRjlM3utlk8BGdb6LKcUpENxdkJmTAldcq5kKdkQvNCpkrL_JxcxLillDKpxYSs3vosWEzsBnfeQp1AUyUNNO0O7QaacRT3aLuYtC4BH5LXxWKRdgGhwypZ-5_E2qdQ1-3XJTlzUEe8OvYpeX96XM9f0uXqeTF_WKZWMNql6FRZllSUeeUc4yB4XmmqwFWSCsVR8EIKaRFViaity3nVQ1ppjVyVAHxKbse9-9B-HDB2ZuejxbqGBttDNLnims-U7sHZCNrQxhjQmX3wOwhfhlEz-DNb8-vPDP7MUJz1wZvjBYi9BBegsT7-pQstC6YH7n7ksH_302Mw0XpsLFY-9NZM1fr_Tn0D0rGKLw</recordid><startdate>20040802</startdate><enddate>20040802</enddate><creator>Tóth, A</creator><creator>Mohai, M</creator><creator>Ujvári, T</creator><creator>Bell, T</creator><creator>Dong, H</creator><creator>Bertóti, I</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20040802</creationdate><title>Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy</title><author>Tóth, A ; Mohai, M ; Ujvári, T ; Bell, T ; Dong, H ; Bertóti, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-ef8bbb04b2dff13a432d908afd70483e435747cee8bee9cf23d3a49899e38baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Metals. Metallurgy</topic><topic>Nanomechanical properties</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Ti6Al4V</topic><topic>XPS</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tóth, A</creatorcontrib><creatorcontrib>Mohai, M</creatorcontrib><creatorcontrib>Ujvári, T</creatorcontrib><creatorcontrib>Bell, T</creatorcontrib><creatorcontrib>Dong, H</creatorcontrib><creatorcontrib>Bertóti, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tóth, A</au><au>Mohai, M</au><au>Ujvári, T</au><au>Bell, T</au><au>Dong, H</au><au>Bertóti, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2004-08-02</date><risdate>2004</risdate><volume>186</volume><issue>1</issue><spage>248</spage><epage>254</epage><pages>248-254</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Plasma immersion ion implantation (PIII) of Ti and Ti6Al4V alloy in dry air plasma has been performed with 25 kV negative pulses up to 1.9×10 18 cm −2 doses. For comparison, prolonged (50–100 h), high-temperature (600–650 °C) heat treatment of a similar Ti-alloy in air (TO treatment) was also performed. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS, X-ray diffraction (XRD) analysis and nanoindentation measurements. According to XPS, surface oxidation and strong surface enrichment of Al occurred on the Ti-alloys after both the “non-equilibrium” PIII treatment and the “equilibrium” TO treatment. After the air PIII treatment Ti and Al were present in fully oxidized (TiO 2 and Al 2O 3) states, and neither nitrogen nor vanadium could be detected in the topmost layer. XRD showed the formation of rutile and substoichiometric TiO 2− x phases on the PIII-treated Ti and TO-treated Ti-alloy, but no crystalline oxide phase was found on the PIII-treated Ti-alloy. The surface hardness and the scratch resistance of the samples increased significantly after PIII treatment. The surface hardening and the improved scratch resistance of the oxidized Ti-alloy samples can be explained mainly by the surface segregation of Al and the formation of a layer containing oxidized Ti and Al.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2004.04.031</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2004-08, Vol.186 (1), p.248-254
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_28393689
source Elsevier ScienceDirect Journals
subjects Applied sciences
Exact sciences and technology
Metals. Metallurgy
Nanomechanical properties
Production techniques
Surface treatment
Ti6Al4V
XPS
XRD
title Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20chemical%20and%20nanomechanical%20aspects%20of%20air%20PIII-treated%20Ti%20and%20Ti-alloy&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=T%C3%B3th,%20A&rft.date=2004-08-02&rft.volume=186&rft.issue=1&rft.spage=248&rft.epage=254&rft.pages=248-254&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2004.04.031&rft_dat=%3Cproquest_cross%3E28393689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28393689&rft_id=info:pmid/&rft_els_id=S0257897204002774&rfr_iscdi=true