Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: An implication to the stability of geologic carbon sequestration

[Display omitted] •Calcite and dolomite dissolves faster in acetic acid than in carbonic acid.•Activity of calcite and dolomite plane follows: (110) > (116) > (101) > (113) > (018) > (104).•Ions on (110) plane diffuse faster than those on (104) plane.•Ca2+ dissolves faster than Mg2+ o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-11, Vol.650 (Pt B), p.1003-1012
Hauptverfasser: Zhu, Guangyou, Wei, Zhenlun, Li, Wanqing, Yang, Xu, Cao, Shuqin, Wu, Xiaoyong, Li, Yubiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue Pt B
container_start_page 1003
container_title Journal of colloid and interface science
container_volume 650
creator Zhu, Guangyou
Wei, Zhenlun
Li, Wanqing
Yang, Xu
Cao, Shuqin
Wu, Xiaoyong
Li, Yubiao
description [Display omitted] •Calcite and dolomite dissolves faster in acetic acid than in carbonic acid.•Activity of calcite and dolomite plane follows: (110) > (116) > (101) > (113) > (018) > (104).•Ions on (110) plane diffuse faster than those on (104) plane.•Ca2+ dissolves faster than Mg2+ on both (110) and (104) planes of dolomite.•Crystal calcite with preferential (104) plane is precipitated at 423.15 K. Geologic carbon sequestration (GCS) via injecting CO2 into deep carbonate reservoirs (mainly calcite and dolomite) is a promising strategy to reduce CO2 level. However, the dissolution or precipitation of calcite/dolomite planes on minerals/solution interface during long-term GCS process develops intergranular porosity and thus affects the permeability and stability of reservoirs. To investigate this process, both calcite and dolomite were dissolved in acetic and carbonic acids. A diffusion-controlled process was identified, with greater diffusion rates in acetic acid than that in carbonic acid. Quantified planes activity of both minerals follows (110) > (116) > (101) > (113) > (018) > (104) through density functional theory. Accomplished with preferential dissolution of calcite (110) planes in carbonic acid, calcite crystals precipitated with (104) planes at 423.15 K, under which, more calcite crystals were observed on dolomite surface, producing Ca-deplete surface. Molecular dynamic calculations showed higher dissolution rates of calcite/dolomite (110) planes than (104). In addition, the dissolution coefficients of Ca2+ were approximately triple of that Mg2+. Therefore, this study reveals the interface dissolution mechanisms of calcite and dolomite, especially on (110) and (104) planes at an atomic level, for the first time, providing better understanding for the stability of long-term GCS process.
doi_str_mv 10.1016/j.jcis.2023.07.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2839253891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723012845</els_id><sourcerecordid>2839253891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d68c067dd3b8d8bee1ea03feb0db0bd2fd27e0468f3d45d5a008c868ed4298783</originalsourceid><addsrcrecordid>eNp9kU2P1SAUhonRONfRP-DCsLyzaD1AW6hxM5n4MckkbnRNKJyOXNtyBa7J_CF_p7R3dOmKAM_7kMNLyGsGNQPWvT3UB-tTzYGLGmQNon1Cdgz6tpIMxFOyA-Cs6mUvL8iLlA4AjLVt_5xcCNm0veTNjvy-XTLG0VikzqcUplP2YaE__ILZ20TN4ugxxJB8fqBjiLPZ7sNIrZmsz7gRLkxhXjd7xuBqO9ozaK7ocTILpnf0eqF-Pk7enuM50Pwdacpm8NNqLr57LJJ7b4s4DoVJ-POEKcct8ZI8G82U8NXjekm-ffzw9eZzdffl0-3N9V1lRdvlynXKQiedE4NyakBkaECMOIAbYHB8dFwiNJ0ahWta1xoAZVWn0DW8V1KJS7I_e48xbM_r2SeL0zpGOCXNleh5K1TPCsrPqC2_kyKO-hj9bOKDZqDXfvRBr_3otR8NUpd-SujNo_80zOj-Rf4WUoD3ZwDLlL88Rp2sx8Wi8xFt1i74__n_AAO8pEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839253891</pqid></control><display><type>article</type><title>Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: An implication to the stability of geologic carbon sequestration</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhu, Guangyou ; Wei, Zhenlun ; Li, Wanqing ; Yang, Xu ; Cao, Shuqin ; Wu, Xiaoyong ; Li, Yubiao</creator><creatorcontrib>Zhu, Guangyou ; Wei, Zhenlun ; Li, Wanqing ; Yang, Xu ; Cao, Shuqin ; Wu, Xiaoyong ; Li, Yubiao</creatorcontrib><description>[Display omitted] •Calcite and dolomite dissolves faster in acetic acid than in carbonic acid.•Activity of calcite and dolomite plane follows: (110) &gt; (116) &gt; (101) &gt; (113) &gt; (018) &gt; (104).•Ions on (110) plane diffuse faster than those on (104) plane.•Ca2+ dissolves faster than Mg2+ on both (110) and (104) planes of dolomite.•Crystal calcite with preferential (104) plane is precipitated at 423.15 K. Geologic carbon sequestration (GCS) via injecting CO2 into deep carbonate reservoirs (mainly calcite and dolomite) is a promising strategy to reduce CO2 level. However, the dissolution or precipitation of calcite/dolomite planes on minerals/solution interface during long-term GCS process develops intergranular porosity and thus affects the permeability and stability of reservoirs. To investigate this process, both calcite and dolomite were dissolved in acetic and carbonic acids. A diffusion-controlled process was identified, with greater diffusion rates in acetic acid than that in carbonic acid. Quantified planes activity of both minerals follows (110) &gt; (116) &gt; (101) &gt; (113) &gt; (018) &gt; (104) through density functional theory. Accomplished with preferential dissolution of calcite (110) planes in carbonic acid, calcite crystals precipitated with (104) planes at 423.15 K, under which, more calcite crystals were observed on dolomite surface, producing Ca-deplete surface. Molecular dynamic calculations showed higher dissolution rates of calcite/dolomite (110) planes than (104). In addition, the dissolution coefficients of Ca2+ were approximately triple of that Mg2+. Therefore, this study reveals the interface dissolution mechanisms of calcite and dolomite, especially on (110) and (104) planes at an atomic level, for the first time, providing better understanding for the stability of long-term GCS process.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.07.035</identifier><identifier>PMID: 37459724</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Carbonate reservoirs ; Crystal plane ; Density functional theory ; Interface dissolution</subject><ispartof>Journal of colloid and interface science, 2023-11, Vol.650 (Pt B), p.1003-1012</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-d68c067dd3b8d8bee1ea03feb0db0bd2fd27e0468f3d45d5a008c868ed4298783</citedby><cites>FETCH-LOGICAL-c356t-d68c067dd3b8d8bee1ea03feb0db0bd2fd27e0468f3d45d5a008c868ed4298783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2023.07.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37459724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Guangyou</creatorcontrib><creatorcontrib>Wei, Zhenlun</creatorcontrib><creatorcontrib>Li, Wanqing</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Cao, Shuqin</creatorcontrib><creatorcontrib>Wu, Xiaoyong</creatorcontrib><creatorcontrib>Li, Yubiao</creatorcontrib><title>Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: An implication to the stability of geologic carbon sequestration</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] •Calcite and dolomite dissolves faster in acetic acid than in carbonic acid.•Activity of calcite and dolomite plane follows: (110) &gt; (116) &gt; (101) &gt; (113) &gt; (018) &gt; (104).•Ions on (110) plane diffuse faster than those on (104) plane.•Ca2+ dissolves faster than Mg2+ on both (110) and (104) planes of dolomite.•Crystal calcite with preferential (104) plane is precipitated at 423.15 K. Geologic carbon sequestration (GCS) via injecting CO2 into deep carbonate reservoirs (mainly calcite and dolomite) is a promising strategy to reduce CO2 level. However, the dissolution or precipitation of calcite/dolomite planes on minerals/solution interface during long-term GCS process develops intergranular porosity and thus affects the permeability and stability of reservoirs. To investigate this process, both calcite and dolomite were dissolved in acetic and carbonic acids. A diffusion-controlled process was identified, with greater diffusion rates in acetic acid than that in carbonic acid. Quantified planes activity of both minerals follows (110) &gt; (116) &gt; (101) &gt; (113) &gt; (018) &gt; (104) through density functional theory. Accomplished with preferential dissolution of calcite (110) planes in carbonic acid, calcite crystals precipitated with (104) planes at 423.15 K, under which, more calcite crystals were observed on dolomite surface, producing Ca-deplete surface. Molecular dynamic calculations showed higher dissolution rates of calcite/dolomite (110) planes than (104). In addition, the dissolution coefficients of Ca2+ were approximately triple of that Mg2+. Therefore, this study reveals the interface dissolution mechanisms of calcite and dolomite, especially on (110) and (104) planes at an atomic level, for the first time, providing better understanding for the stability of long-term GCS process.</description><subject>Carbonate reservoirs</subject><subject>Crystal plane</subject><subject>Density functional theory</subject><subject>Interface dissolution</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P1SAUhonRONfRP-DCsLyzaD1AW6hxM5n4MckkbnRNKJyOXNtyBa7J_CF_p7R3dOmKAM_7kMNLyGsGNQPWvT3UB-tTzYGLGmQNon1Cdgz6tpIMxFOyA-Cs6mUvL8iLlA4AjLVt_5xcCNm0veTNjvy-XTLG0VikzqcUplP2YaE__ILZ20TN4ugxxJB8fqBjiLPZ7sNIrZmsz7gRLkxhXjd7xuBqO9ozaK7ocTILpnf0eqF-Pk7enuM50Pwdacpm8NNqLr57LJJ7b4s4DoVJ-POEKcct8ZI8G82U8NXjekm-ffzw9eZzdffl0-3N9V1lRdvlynXKQiedE4NyakBkaECMOIAbYHB8dFwiNJ0ahWta1xoAZVWn0DW8V1KJS7I_e48xbM_r2SeL0zpGOCXNleh5K1TPCsrPqC2_kyKO-hj9bOKDZqDXfvRBr_3otR8NUpd-SujNo_80zOj-Rf4WUoD3ZwDLlL88Rp2sx8Wi8xFt1i74__n_AAO8pEA</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Zhu, Guangyou</creator><creator>Wei, Zhenlun</creator><creator>Li, Wanqing</creator><creator>Yang, Xu</creator><creator>Cao, Shuqin</creator><creator>Wu, Xiaoyong</creator><creator>Li, Yubiao</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231115</creationdate><title>Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: An implication to the stability of geologic carbon sequestration</title><author>Zhu, Guangyou ; Wei, Zhenlun ; Li, Wanqing ; Yang, Xu ; Cao, Shuqin ; Wu, Xiaoyong ; Li, Yubiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d68c067dd3b8d8bee1ea03feb0db0bd2fd27e0468f3d45d5a008c868ed4298783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbonate reservoirs</topic><topic>Crystal plane</topic><topic>Density functional theory</topic><topic>Interface dissolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Guangyou</creatorcontrib><creatorcontrib>Wei, Zhenlun</creatorcontrib><creatorcontrib>Li, Wanqing</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Cao, Shuqin</creatorcontrib><creatorcontrib>Wu, Xiaoyong</creatorcontrib><creatorcontrib>Li, Yubiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Guangyou</au><au>Wei, Zhenlun</au><au>Li, Wanqing</au><au>Yang, Xu</au><au>Cao, Shuqin</au><au>Wu, Xiaoyong</au><au>Li, Yubiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: An implication to the stability of geologic carbon sequestration</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2023-11-15</date><risdate>2023</risdate><volume>650</volume><issue>Pt B</issue><spage>1003</spage><epage>1012</epage><pages>1003-1012</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] •Calcite and dolomite dissolves faster in acetic acid than in carbonic acid.•Activity of calcite and dolomite plane follows: (110) &gt; (116) &gt; (101) &gt; (113) &gt; (018) &gt; (104).•Ions on (110) plane diffuse faster than those on (104) plane.•Ca2+ dissolves faster than Mg2+ on both (110) and (104) planes of dolomite.•Crystal calcite with preferential (104) plane is precipitated at 423.15 K. Geologic carbon sequestration (GCS) via injecting CO2 into deep carbonate reservoirs (mainly calcite and dolomite) is a promising strategy to reduce CO2 level. However, the dissolution or precipitation of calcite/dolomite planes on minerals/solution interface during long-term GCS process develops intergranular porosity and thus affects the permeability and stability of reservoirs. To investigate this process, both calcite and dolomite were dissolved in acetic and carbonic acids. A diffusion-controlled process was identified, with greater diffusion rates in acetic acid than that in carbonic acid. Quantified planes activity of both minerals follows (110) &gt; (116) &gt; (101) &gt; (113) &gt; (018) &gt; (104) through density functional theory. Accomplished with preferential dissolution of calcite (110) planes in carbonic acid, calcite crystals precipitated with (104) planes at 423.15 K, under which, more calcite crystals were observed on dolomite surface, producing Ca-deplete surface. Molecular dynamic calculations showed higher dissolution rates of calcite/dolomite (110) planes than (104). In addition, the dissolution coefficients of Ca2+ were approximately triple of that Mg2+. Therefore, this study reveals the interface dissolution mechanisms of calcite and dolomite, especially on (110) and (104) planes at an atomic level, for the first time, providing better understanding for the stability of long-term GCS process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37459724</pmid><doi>10.1016/j.jcis.2023.07.035</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2023-11, Vol.650 (Pt B), p.1003-1012
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2839253891
source Access via ScienceDirect (Elsevier)
subjects Carbonate reservoirs
Crystal plane
Density functional theory
Interface dissolution
title Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: An implication to the stability of geologic carbon sequestration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20dissolution%20kinetics%20and%20porosity%20formation%20of%20calcite%20and%20dolomite%20(110)%20and%20(104)%20planes:%20An%20implication%20to%20the%20stability%20of%20geologic%20carbon%20sequestration&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhu,%20Guangyou&rft.date=2023-11-15&rft.volume=650&rft.issue=Pt%20B&rft.spage=1003&rft.epage=1012&rft.pages=1003-1012&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.07.035&rft_dat=%3Cproquest_cross%3E2839253891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839253891&rft_id=info:pmid/37459724&rft_els_id=S0021979723012845&rfr_iscdi=true