Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation

We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy. This was a retrospective study using a prospective multicenter registry which enrolled c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stroke (1970) 2023-08, Vol.54 (8), p.2105-2113
Hauptverfasser: Heo, JoonNyung, Lee, Hyungwoo, Seog, Young, Kim, Sungeun, Baek, Jang-Hyun, Park, Hyungjong, Seo, Kwon-Duk, Kim, Gyu Sik, Cho, Han-Jin, Baik, Minyoul, Yoo, Joonsang, Kim, Jinkwon, Lee, Jun, Chang, Yoonkyung, Song, Tae-Jin, Seo, Jung Hwa, Ahn, Seong Hwan, Lee, Heow Won, Kwon, Il, Park, Eunjeong, Kim, Byung Moon, Kim, Dong Joon, Kim, Young Dae, Nam, Hyo Suk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2113
container_issue 8
container_start_page 2105
container_title Stroke (1970)
container_volume 54
creator Heo, JoonNyung
Lee, Hyungwoo
Seog, Young
Kim, Sungeun
Baek, Jang-Hyun
Park, Hyungjong
Seo, Kwon-Duk
Kim, Gyu Sik
Cho, Han-Jin
Baik, Minyoul
Yoo, Joonsang
Kim, Jinkwon
Lee, Jun
Chang, Yoonkyung
Song, Tae-Jin
Seo, Jung Hwa
Ahn, Seong Hwan
Lee, Heow Won
Kwon, Il
Park, Eunjeong
Kim, Byung Moon
Kim, Dong Joon
Kim, Young Dae
Nam, Hyo Suk
description We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy. This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke. The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%. Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.
doi_str_mv 10.1161/STROKEAHA.123.043127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2839250620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839250620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3478-e6dddf799f5702bab767cabfc45016efe0d2b5fd2f6f2005d18e1f3185d81e5d3</originalsourceid><addsrcrecordid>eNpFkVtv1DAQhS0EokvpP0DIj7xk8SVOHN5W2xtiqyK6lEfLscfE1Im3TtKq_x5Xu5SH0ehIZ85ovkHoAyVLSiv6-Wb74_rb2epytaSML0nJKatfoQUVrCzKisnXaEEIbwpWNs0RejeOfwghjEvxFh3xOjuIqBboYa0HAwl_T2C9mXwc8C8_dfhKm84PgDeg0-CH3zg6vO1S7FuPz3M7CDBT7J-wH_DNlOIdfMFXc5i8gWHKoafwACHu-qywHiy-1cFb_bzkPXrjdBjh5NCP0c_zs-36sthcX3xdrzaF4WUtC6ista5uGidqwlrd1lVtdOtMKQitwAGxrBXOMlc5RoiwVAJ1nEphJQVh-TH6tM_dpXg_wzip3o8GQtADxHlUTPKGCZJhZGu5t5oUxzGBU7vke52eFCXqmbh6Ia4ycbUnnsc-HjbMbQ_2Zegf4v-5jzFkKONdmB8hqQ50mDqVf0LyUaRg-TdEZlXkopL_BVAujoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839250620</pqid></control><display><type>article</type><title>Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation</title><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Heo, JoonNyung ; Lee, Hyungwoo ; Seog, Young ; Kim, Sungeun ; Baek, Jang-Hyun ; Park, Hyungjong ; Seo, Kwon-Duk ; Kim, Gyu Sik ; Cho, Han-Jin ; Baik, Minyoul ; Yoo, Joonsang ; Kim, Jinkwon ; Lee, Jun ; Chang, Yoonkyung ; Song, Tae-Jin ; Seo, Jung Hwa ; Ahn, Seong Hwan ; Lee, Heow Won ; Kwon, Il ; Park, Eunjeong ; Kim, Byung Moon ; Kim, Dong Joon ; Kim, Young Dae ; Nam, Hyo Suk</creator><creatorcontrib>Heo, JoonNyung ; Lee, Hyungwoo ; Seog, Young ; Kim, Sungeun ; Baek, Jang-Hyun ; Park, Hyungjong ; Seo, Kwon-Duk ; Kim, Gyu Sik ; Cho, Han-Jin ; Baik, Minyoul ; Yoo, Joonsang ; Kim, Jinkwon ; Lee, Jun ; Chang, Yoonkyung ; Song, Tae-Jin ; Seo, Jung Hwa ; Ahn, Seong Hwan ; Lee, Heow Won ; Kwon, Il ; Park, Eunjeong ; Kim, Byung Moon ; Kim, Dong Joon ; Kim, Young Dae ; Nam, Hyo Suk</creatorcontrib><description>We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy. This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke. The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%. Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.</description><identifier>ISSN: 0039-2499</identifier><identifier>EISSN: 1524-4628</identifier><identifier>DOI: 10.1161/STROKEAHA.123.043127</identifier><identifier>PMID: 37462056</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><ispartof>Stroke (1970), 2023-08, Vol.54 (8), p.2105-2113</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3478-e6dddf799f5702bab767cabfc45016efe0d2b5fd2f6f2005d18e1f3185d81e5d3</cites><orcidid>0000-0003-0207-2772 ; 0000-0002-6582-0953 ; 0000-0003-3154-8864 ; 0000-0003-0156-9736 ; 0000-0002-0345-2278 ; 0000-0003-1169-6798 ; 0000-0003-2257-3478 ; 0000-0001-9449-5646 ; 0000-0001-5750-2616 ; 0000-0002-3111-3476 ; 0000-0002-4415-3995 ; 0000-0001-8021-8365 ; 0000-0001-8643-0797 ; 0000-0002-6733-0683 ; 0000-0002-4778-491X ; 0000-0002-6112-2939 ; 0000-0002-7035-087X ; 0000-0001-6287-6348 ; 0000-0001-7152-9225 ; 0000-0001-8593-6841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37462056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, JoonNyung</creatorcontrib><creatorcontrib>Lee, Hyungwoo</creatorcontrib><creatorcontrib>Seog, Young</creatorcontrib><creatorcontrib>Kim, Sungeun</creatorcontrib><creatorcontrib>Baek, Jang-Hyun</creatorcontrib><creatorcontrib>Park, Hyungjong</creatorcontrib><creatorcontrib>Seo, Kwon-Duk</creatorcontrib><creatorcontrib>Kim, Gyu Sik</creatorcontrib><creatorcontrib>Cho, Han-Jin</creatorcontrib><creatorcontrib>Baik, Minyoul</creatorcontrib><creatorcontrib>Yoo, Joonsang</creatorcontrib><creatorcontrib>Kim, Jinkwon</creatorcontrib><creatorcontrib>Lee, Jun</creatorcontrib><creatorcontrib>Chang, Yoonkyung</creatorcontrib><creatorcontrib>Song, Tae-Jin</creatorcontrib><creatorcontrib>Seo, Jung Hwa</creatorcontrib><creatorcontrib>Ahn, Seong Hwan</creatorcontrib><creatorcontrib>Lee, Heow Won</creatorcontrib><creatorcontrib>Kwon, Il</creatorcontrib><creatorcontrib>Park, Eunjeong</creatorcontrib><creatorcontrib>Kim, Byung Moon</creatorcontrib><creatorcontrib>Kim, Dong Joon</creatorcontrib><creatorcontrib>Kim, Young Dae</creatorcontrib><creatorcontrib>Nam, Hyo Suk</creatorcontrib><title>Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation</title><title>Stroke (1970)</title><addtitle>Stroke</addtitle><description>We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy. This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke. The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%. Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.</description><issn>0039-2499</issn><issn>1524-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkVtv1DAQhS0EokvpP0DIj7xk8SVOHN5W2xtiqyK6lEfLscfE1Im3TtKq_x5Xu5SH0ehIZ85ovkHoAyVLSiv6-Wb74_rb2epytaSML0nJKatfoQUVrCzKisnXaEEIbwpWNs0RejeOfwghjEvxFh3xOjuIqBboYa0HAwl_T2C9mXwc8C8_dfhKm84PgDeg0-CH3zg6vO1S7FuPz3M7CDBT7J-wH_DNlOIdfMFXc5i8gWHKoafwACHu-qywHiy-1cFb_bzkPXrjdBjh5NCP0c_zs-36sthcX3xdrzaF4WUtC6ista5uGidqwlrd1lVtdOtMKQitwAGxrBXOMlc5RoiwVAJ1nEphJQVh-TH6tM_dpXg_wzip3o8GQtADxHlUTPKGCZJhZGu5t5oUxzGBU7vke52eFCXqmbh6Ia4ycbUnnsc-HjbMbQ_2Zegf4v-5jzFkKONdmB8hqQ50mDqVf0LyUaRg-TdEZlXkopL_BVAujoM</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Heo, JoonNyung</creator><creator>Lee, Hyungwoo</creator><creator>Seog, Young</creator><creator>Kim, Sungeun</creator><creator>Baek, Jang-Hyun</creator><creator>Park, Hyungjong</creator><creator>Seo, Kwon-Duk</creator><creator>Kim, Gyu Sik</creator><creator>Cho, Han-Jin</creator><creator>Baik, Minyoul</creator><creator>Yoo, Joonsang</creator><creator>Kim, Jinkwon</creator><creator>Lee, Jun</creator><creator>Chang, Yoonkyung</creator><creator>Song, Tae-Jin</creator><creator>Seo, Jung Hwa</creator><creator>Ahn, Seong Hwan</creator><creator>Lee, Heow Won</creator><creator>Kwon, Il</creator><creator>Park, Eunjeong</creator><creator>Kim, Byung Moon</creator><creator>Kim, Dong Joon</creator><creator>Kim, Young Dae</creator><creator>Nam, Hyo Suk</creator><general>Lippincott Williams &amp; Wilkins</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0207-2772</orcidid><orcidid>https://orcid.org/0000-0002-6582-0953</orcidid><orcidid>https://orcid.org/0000-0003-3154-8864</orcidid><orcidid>https://orcid.org/0000-0003-0156-9736</orcidid><orcidid>https://orcid.org/0000-0002-0345-2278</orcidid><orcidid>https://orcid.org/0000-0003-1169-6798</orcidid><orcidid>https://orcid.org/0000-0003-2257-3478</orcidid><orcidid>https://orcid.org/0000-0001-9449-5646</orcidid><orcidid>https://orcid.org/0000-0001-5750-2616</orcidid><orcidid>https://orcid.org/0000-0002-3111-3476</orcidid><orcidid>https://orcid.org/0000-0002-4415-3995</orcidid><orcidid>https://orcid.org/0000-0001-8021-8365</orcidid><orcidid>https://orcid.org/0000-0001-8643-0797</orcidid><orcidid>https://orcid.org/0000-0002-6733-0683</orcidid><orcidid>https://orcid.org/0000-0002-4778-491X</orcidid><orcidid>https://orcid.org/0000-0002-6112-2939</orcidid><orcidid>https://orcid.org/0000-0002-7035-087X</orcidid><orcidid>https://orcid.org/0000-0001-6287-6348</orcidid><orcidid>https://orcid.org/0000-0001-7152-9225</orcidid><orcidid>https://orcid.org/0000-0001-8593-6841</orcidid></search><sort><creationdate>20230801</creationdate><title>Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation</title><author>Heo, JoonNyung ; Lee, Hyungwoo ; Seog, Young ; Kim, Sungeun ; Baek, Jang-Hyun ; Park, Hyungjong ; Seo, Kwon-Duk ; Kim, Gyu Sik ; Cho, Han-Jin ; Baik, Minyoul ; Yoo, Joonsang ; Kim, Jinkwon ; Lee, Jun ; Chang, Yoonkyung ; Song, Tae-Jin ; Seo, Jung Hwa ; Ahn, Seong Hwan ; Lee, Heow Won ; Kwon, Il ; Park, Eunjeong ; Kim, Byung Moon ; Kim, Dong Joon ; Kim, Young Dae ; Nam, Hyo Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3478-e6dddf799f5702bab767cabfc45016efe0d2b5fd2f6f2005d18e1f3185d81e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, JoonNyung</creatorcontrib><creatorcontrib>Lee, Hyungwoo</creatorcontrib><creatorcontrib>Seog, Young</creatorcontrib><creatorcontrib>Kim, Sungeun</creatorcontrib><creatorcontrib>Baek, Jang-Hyun</creatorcontrib><creatorcontrib>Park, Hyungjong</creatorcontrib><creatorcontrib>Seo, Kwon-Duk</creatorcontrib><creatorcontrib>Kim, Gyu Sik</creatorcontrib><creatorcontrib>Cho, Han-Jin</creatorcontrib><creatorcontrib>Baik, Minyoul</creatorcontrib><creatorcontrib>Yoo, Joonsang</creatorcontrib><creatorcontrib>Kim, Jinkwon</creatorcontrib><creatorcontrib>Lee, Jun</creatorcontrib><creatorcontrib>Chang, Yoonkyung</creatorcontrib><creatorcontrib>Song, Tae-Jin</creatorcontrib><creatorcontrib>Seo, Jung Hwa</creatorcontrib><creatorcontrib>Ahn, Seong Hwan</creatorcontrib><creatorcontrib>Lee, Heow Won</creatorcontrib><creatorcontrib>Kwon, Il</creatorcontrib><creatorcontrib>Park, Eunjeong</creatorcontrib><creatorcontrib>Kim, Byung Moon</creatorcontrib><creatorcontrib>Kim, Dong Joon</creatorcontrib><creatorcontrib>Kim, Young Dae</creatorcontrib><creatorcontrib>Nam, Hyo Suk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Stroke (1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, JoonNyung</au><au>Lee, Hyungwoo</au><au>Seog, Young</au><au>Kim, Sungeun</au><au>Baek, Jang-Hyun</au><au>Park, Hyungjong</au><au>Seo, Kwon-Duk</au><au>Kim, Gyu Sik</au><au>Cho, Han-Jin</au><au>Baik, Minyoul</au><au>Yoo, Joonsang</au><au>Kim, Jinkwon</au><au>Lee, Jun</au><au>Chang, Yoonkyung</au><au>Song, Tae-Jin</au><au>Seo, Jung Hwa</au><au>Ahn, Seong Hwan</au><au>Lee, Heow Won</au><au>Kwon, Il</au><au>Park, Eunjeong</au><au>Kim, Byung Moon</au><au>Kim, Dong Joon</au><au>Kim, Young Dae</au><au>Nam, Hyo Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation</atitle><jtitle>Stroke (1970)</jtitle><addtitle>Stroke</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>54</volume><issue>8</issue><spage>2105</spage><epage>2113</epage><pages>2105-2113</pages><issn>0039-2499</issn><eissn>1524-4628</eissn><abstract>We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy. This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke. The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%. Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>37462056</pmid><doi>10.1161/STROKEAHA.123.043127</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0207-2772</orcidid><orcidid>https://orcid.org/0000-0002-6582-0953</orcidid><orcidid>https://orcid.org/0000-0003-3154-8864</orcidid><orcidid>https://orcid.org/0000-0003-0156-9736</orcidid><orcidid>https://orcid.org/0000-0002-0345-2278</orcidid><orcidid>https://orcid.org/0000-0003-1169-6798</orcidid><orcidid>https://orcid.org/0000-0003-2257-3478</orcidid><orcidid>https://orcid.org/0000-0001-9449-5646</orcidid><orcidid>https://orcid.org/0000-0001-5750-2616</orcidid><orcidid>https://orcid.org/0000-0002-3111-3476</orcidid><orcidid>https://orcid.org/0000-0002-4415-3995</orcidid><orcidid>https://orcid.org/0000-0001-8021-8365</orcidid><orcidid>https://orcid.org/0000-0001-8643-0797</orcidid><orcidid>https://orcid.org/0000-0002-6733-0683</orcidid><orcidid>https://orcid.org/0000-0002-4778-491X</orcidid><orcidid>https://orcid.org/0000-0002-6112-2939</orcidid><orcidid>https://orcid.org/0000-0002-7035-087X</orcidid><orcidid>https://orcid.org/0000-0001-6287-6348</orcidid><orcidid>https://orcid.org/0000-0001-7152-9225</orcidid><orcidid>https://orcid.org/0000-0001-8593-6841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-2499
ispartof Stroke (1970), 2023-08, Vol.54 (8), p.2105-2113
issn 0039-2499
1524-4628
language eng
recordid cdi_proquest_miscellaneous_2839250620
source American Heart Association Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Journals@Ovid Complete
title Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancer%20Prediction%20With%20Machine%20Learning%20of%20Thrombi%20From%20Thrombectomy%20in%20Stroke:%20Multicenter%20Development%20and%20Validation&rft.jtitle=Stroke%20(1970)&rft.au=Heo,%20JoonNyung&rft.date=2023-08-01&rft.volume=54&rft.issue=8&rft.spage=2105&rft.epage=2113&rft.pages=2105-2113&rft.issn=0039-2499&rft.eissn=1524-4628&rft_id=info:doi/10.1161/STROKEAHA.123.043127&rft_dat=%3Cproquest_cross%3E2839250620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839250620&rft_id=info:pmid/37462056&rfr_iscdi=true