Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation
We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy. This was a retrospective study using a prospective multicenter registry which enrolled c...
Gespeichert in:
Veröffentlicht in: | Stroke (1970) 2023-08, Vol.54 (8), p.2105-2113 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2113 |
---|---|
container_issue | 8 |
container_start_page | 2105 |
container_title | Stroke (1970) |
container_volume | 54 |
creator | Heo, JoonNyung Lee, Hyungwoo Seog, Young Kim, Sungeun Baek, Jang-Hyun Park, Hyungjong Seo, Kwon-Duk Kim, Gyu Sik Cho, Han-Jin Baik, Minyoul Yoo, Joonsang Kim, Jinkwon Lee, Jun Chang, Yoonkyung Song, Tae-Jin Seo, Jung Hwa Ahn, Seong Hwan Lee, Heow Won Kwon, Il Park, Eunjeong Kim, Byung Moon Kim, Dong Joon Kim, Young Dae Nam, Hyo Suk |
description | We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy.
This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke.
The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%.
Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy. |
doi_str_mv | 10.1161/STROKEAHA.123.043127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2839250620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839250620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3478-e6dddf799f5702bab767cabfc45016efe0d2b5fd2f6f2005d18e1f3185d81e5d3</originalsourceid><addsrcrecordid>eNpFkVtv1DAQhS0EokvpP0DIj7xk8SVOHN5W2xtiqyK6lEfLscfE1Im3TtKq_x5Xu5SH0ehIZ85ovkHoAyVLSiv6-Wb74_rb2epytaSML0nJKatfoQUVrCzKisnXaEEIbwpWNs0RejeOfwghjEvxFh3xOjuIqBboYa0HAwl_T2C9mXwc8C8_dfhKm84PgDeg0-CH3zg6vO1S7FuPz3M7CDBT7J-wH_DNlOIdfMFXc5i8gWHKoafwACHu-qywHiy-1cFb_bzkPXrjdBjh5NCP0c_zs-36sthcX3xdrzaF4WUtC6ista5uGidqwlrd1lVtdOtMKQitwAGxrBXOMlc5RoiwVAJ1nEphJQVh-TH6tM_dpXg_wzip3o8GQtADxHlUTPKGCZJhZGu5t5oUxzGBU7vke52eFCXqmbh6Ia4ycbUnnsc-HjbMbQ_2Zegf4v-5jzFkKONdmB8hqQ50mDqVf0LyUaRg-TdEZlXkopL_BVAujoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839250620</pqid></control><display><type>article</type><title>Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation</title><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Heo, JoonNyung ; Lee, Hyungwoo ; Seog, Young ; Kim, Sungeun ; Baek, Jang-Hyun ; Park, Hyungjong ; Seo, Kwon-Duk ; Kim, Gyu Sik ; Cho, Han-Jin ; Baik, Minyoul ; Yoo, Joonsang ; Kim, Jinkwon ; Lee, Jun ; Chang, Yoonkyung ; Song, Tae-Jin ; Seo, Jung Hwa ; Ahn, Seong Hwan ; Lee, Heow Won ; Kwon, Il ; Park, Eunjeong ; Kim, Byung Moon ; Kim, Dong Joon ; Kim, Young Dae ; Nam, Hyo Suk</creator><creatorcontrib>Heo, JoonNyung ; Lee, Hyungwoo ; Seog, Young ; Kim, Sungeun ; Baek, Jang-Hyun ; Park, Hyungjong ; Seo, Kwon-Duk ; Kim, Gyu Sik ; Cho, Han-Jin ; Baik, Minyoul ; Yoo, Joonsang ; Kim, Jinkwon ; Lee, Jun ; Chang, Yoonkyung ; Song, Tae-Jin ; Seo, Jung Hwa ; Ahn, Seong Hwan ; Lee, Heow Won ; Kwon, Il ; Park, Eunjeong ; Kim, Byung Moon ; Kim, Dong Joon ; Kim, Young Dae ; Nam, Hyo Suk</creatorcontrib><description>We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy.
This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke.
The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%.
Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.</description><identifier>ISSN: 0039-2499</identifier><identifier>EISSN: 1524-4628</identifier><identifier>DOI: 10.1161/STROKEAHA.123.043127</identifier><identifier>PMID: 37462056</identifier><language>eng</language><publisher>United States: Lippincott Williams & Wilkins</publisher><ispartof>Stroke (1970), 2023-08, Vol.54 (8), p.2105-2113</ispartof><rights>Lippincott Williams & Wilkins</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3478-e6dddf799f5702bab767cabfc45016efe0d2b5fd2f6f2005d18e1f3185d81e5d3</cites><orcidid>0000-0003-0207-2772 ; 0000-0002-6582-0953 ; 0000-0003-3154-8864 ; 0000-0003-0156-9736 ; 0000-0002-0345-2278 ; 0000-0003-1169-6798 ; 0000-0003-2257-3478 ; 0000-0001-9449-5646 ; 0000-0001-5750-2616 ; 0000-0002-3111-3476 ; 0000-0002-4415-3995 ; 0000-0001-8021-8365 ; 0000-0001-8643-0797 ; 0000-0002-6733-0683 ; 0000-0002-4778-491X ; 0000-0002-6112-2939 ; 0000-0002-7035-087X ; 0000-0001-6287-6348 ; 0000-0001-7152-9225 ; 0000-0001-8593-6841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37462056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, JoonNyung</creatorcontrib><creatorcontrib>Lee, Hyungwoo</creatorcontrib><creatorcontrib>Seog, Young</creatorcontrib><creatorcontrib>Kim, Sungeun</creatorcontrib><creatorcontrib>Baek, Jang-Hyun</creatorcontrib><creatorcontrib>Park, Hyungjong</creatorcontrib><creatorcontrib>Seo, Kwon-Duk</creatorcontrib><creatorcontrib>Kim, Gyu Sik</creatorcontrib><creatorcontrib>Cho, Han-Jin</creatorcontrib><creatorcontrib>Baik, Minyoul</creatorcontrib><creatorcontrib>Yoo, Joonsang</creatorcontrib><creatorcontrib>Kim, Jinkwon</creatorcontrib><creatorcontrib>Lee, Jun</creatorcontrib><creatorcontrib>Chang, Yoonkyung</creatorcontrib><creatorcontrib>Song, Tae-Jin</creatorcontrib><creatorcontrib>Seo, Jung Hwa</creatorcontrib><creatorcontrib>Ahn, Seong Hwan</creatorcontrib><creatorcontrib>Lee, Heow Won</creatorcontrib><creatorcontrib>Kwon, Il</creatorcontrib><creatorcontrib>Park, Eunjeong</creatorcontrib><creatorcontrib>Kim, Byung Moon</creatorcontrib><creatorcontrib>Kim, Dong Joon</creatorcontrib><creatorcontrib>Kim, Young Dae</creatorcontrib><creatorcontrib>Nam, Hyo Suk</creatorcontrib><title>Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation</title><title>Stroke (1970)</title><addtitle>Stroke</addtitle><description>We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy.
This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke.
The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%.
Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.</description><issn>0039-2499</issn><issn>1524-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkVtv1DAQhS0EokvpP0DIj7xk8SVOHN5W2xtiqyK6lEfLscfE1Im3TtKq_x5Xu5SH0ehIZ85ovkHoAyVLSiv6-Wb74_rb2epytaSML0nJKatfoQUVrCzKisnXaEEIbwpWNs0RejeOfwghjEvxFh3xOjuIqBboYa0HAwl_T2C9mXwc8C8_dfhKm84PgDeg0-CH3zg6vO1S7FuPz3M7CDBT7J-wH_DNlOIdfMFXc5i8gWHKoafwACHu-qywHiy-1cFb_bzkPXrjdBjh5NCP0c_zs-36sthcX3xdrzaF4WUtC6ista5uGidqwlrd1lVtdOtMKQitwAGxrBXOMlc5RoiwVAJ1nEphJQVh-TH6tM_dpXg_wzip3o8GQtADxHlUTPKGCZJhZGu5t5oUxzGBU7vke52eFCXqmbh6Ia4ycbUnnsc-HjbMbQ_2Zegf4v-5jzFkKONdmB8hqQ50mDqVf0LyUaRg-TdEZlXkopL_BVAujoM</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Heo, JoonNyung</creator><creator>Lee, Hyungwoo</creator><creator>Seog, Young</creator><creator>Kim, Sungeun</creator><creator>Baek, Jang-Hyun</creator><creator>Park, Hyungjong</creator><creator>Seo, Kwon-Duk</creator><creator>Kim, Gyu Sik</creator><creator>Cho, Han-Jin</creator><creator>Baik, Minyoul</creator><creator>Yoo, Joonsang</creator><creator>Kim, Jinkwon</creator><creator>Lee, Jun</creator><creator>Chang, Yoonkyung</creator><creator>Song, Tae-Jin</creator><creator>Seo, Jung Hwa</creator><creator>Ahn, Seong Hwan</creator><creator>Lee, Heow Won</creator><creator>Kwon, Il</creator><creator>Park, Eunjeong</creator><creator>Kim, Byung Moon</creator><creator>Kim, Dong Joon</creator><creator>Kim, Young Dae</creator><creator>Nam, Hyo Suk</creator><general>Lippincott Williams & Wilkins</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0207-2772</orcidid><orcidid>https://orcid.org/0000-0002-6582-0953</orcidid><orcidid>https://orcid.org/0000-0003-3154-8864</orcidid><orcidid>https://orcid.org/0000-0003-0156-9736</orcidid><orcidid>https://orcid.org/0000-0002-0345-2278</orcidid><orcidid>https://orcid.org/0000-0003-1169-6798</orcidid><orcidid>https://orcid.org/0000-0003-2257-3478</orcidid><orcidid>https://orcid.org/0000-0001-9449-5646</orcidid><orcidid>https://orcid.org/0000-0001-5750-2616</orcidid><orcidid>https://orcid.org/0000-0002-3111-3476</orcidid><orcidid>https://orcid.org/0000-0002-4415-3995</orcidid><orcidid>https://orcid.org/0000-0001-8021-8365</orcidid><orcidid>https://orcid.org/0000-0001-8643-0797</orcidid><orcidid>https://orcid.org/0000-0002-6733-0683</orcidid><orcidid>https://orcid.org/0000-0002-4778-491X</orcidid><orcidid>https://orcid.org/0000-0002-6112-2939</orcidid><orcidid>https://orcid.org/0000-0002-7035-087X</orcidid><orcidid>https://orcid.org/0000-0001-6287-6348</orcidid><orcidid>https://orcid.org/0000-0001-7152-9225</orcidid><orcidid>https://orcid.org/0000-0001-8593-6841</orcidid></search><sort><creationdate>20230801</creationdate><title>Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation</title><author>Heo, JoonNyung ; Lee, Hyungwoo ; Seog, Young ; Kim, Sungeun ; Baek, Jang-Hyun ; Park, Hyungjong ; Seo, Kwon-Duk ; Kim, Gyu Sik ; Cho, Han-Jin ; Baik, Minyoul ; Yoo, Joonsang ; Kim, Jinkwon ; Lee, Jun ; Chang, Yoonkyung ; Song, Tae-Jin ; Seo, Jung Hwa ; Ahn, Seong Hwan ; Lee, Heow Won ; Kwon, Il ; Park, Eunjeong ; Kim, Byung Moon ; Kim, Dong Joon ; Kim, Young Dae ; Nam, Hyo Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3478-e6dddf799f5702bab767cabfc45016efe0d2b5fd2f6f2005d18e1f3185d81e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, JoonNyung</creatorcontrib><creatorcontrib>Lee, Hyungwoo</creatorcontrib><creatorcontrib>Seog, Young</creatorcontrib><creatorcontrib>Kim, Sungeun</creatorcontrib><creatorcontrib>Baek, Jang-Hyun</creatorcontrib><creatorcontrib>Park, Hyungjong</creatorcontrib><creatorcontrib>Seo, Kwon-Duk</creatorcontrib><creatorcontrib>Kim, Gyu Sik</creatorcontrib><creatorcontrib>Cho, Han-Jin</creatorcontrib><creatorcontrib>Baik, Minyoul</creatorcontrib><creatorcontrib>Yoo, Joonsang</creatorcontrib><creatorcontrib>Kim, Jinkwon</creatorcontrib><creatorcontrib>Lee, Jun</creatorcontrib><creatorcontrib>Chang, Yoonkyung</creatorcontrib><creatorcontrib>Song, Tae-Jin</creatorcontrib><creatorcontrib>Seo, Jung Hwa</creatorcontrib><creatorcontrib>Ahn, Seong Hwan</creatorcontrib><creatorcontrib>Lee, Heow Won</creatorcontrib><creatorcontrib>Kwon, Il</creatorcontrib><creatorcontrib>Park, Eunjeong</creatorcontrib><creatorcontrib>Kim, Byung Moon</creatorcontrib><creatorcontrib>Kim, Dong Joon</creatorcontrib><creatorcontrib>Kim, Young Dae</creatorcontrib><creatorcontrib>Nam, Hyo Suk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Stroke (1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, JoonNyung</au><au>Lee, Hyungwoo</au><au>Seog, Young</au><au>Kim, Sungeun</au><au>Baek, Jang-Hyun</au><au>Park, Hyungjong</au><au>Seo, Kwon-Duk</au><au>Kim, Gyu Sik</au><au>Cho, Han-Jin</au><au>Baik, Minyoul</au><au>Yoo, Joonsang</au><au>Kim, Jinkwon</au><au>Lee, Jun</au><au>Chang, Yoonkyung</au><au>Song, Tae-Jin</au><au>Seo, Jung Hwa</au><au>Ahn, Seong Hwan</au><au>Lee, Heow Won</au><au>Kwon, Il</au><au>Park, Eunjeong</au><au>Kim, Byung Moon</au><au>Kim, Dong Joon</au><au>Kim, Young Dae</au><au>Nam, Hyo Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation</atitle><jtitle>Stroke (1970)</jtitle><addtitle>Stroke</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>54</volume><issue>8</issue><spage>2105</spage><epage>2113</epage><pages>2105-2113</pages><issn>0039-2499</issn><eissn>1524-4628</eissn><abstract>We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy.
This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke.
The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%.
Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.</abstract><cop>United States</cop><pub>Lippincott Williams & Wilkins</pub><pmid>37462056</pmid><doi>10.1161/STROKEAHA.123.043127</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0207-2772</orcidid><orcidid>https://orcid.org/0000-0002-6582-0953</orcidid><orcidid>https://orcid.org/0000-0003-3154-8864</orcidid><orcidid>https://orcid.org/0000-0003-0156-9736</orcidid><orcidid>https://orcid.org/0000-0002-0345-2278</orcidid><orcidid>https://orcid.org/0000-0003-1169-6798</orcidid><orcidid>https://orcid.org/0000-0003-2257-3478</orcidid><orcidid>https://orcid.org/0000-0001-9449-5646</orcidid><orcidid>https://orcid.org/0000-0001-5750-2616</orcidid><orcidid>https://orcid.org/0000-0002-3111-3476</orcidid><orcidid>https://orcid.org/0000-0002-4415-3995</orcidid><orcidid>https://orcid.org/0000-0001-8021-8365</orcidid><orcidid>https://orcid.org/0000-0001-8643-0797</orcidid><orcidid>https://orcid.org/0000-0002-6733-0683</orcidid><orcidid>https://orcid.org/0000-0002-4778-491X</orcidid><orcidid>https://orcid.org/0000-0002-6112-2939</orcidid><orcidid>https://orcid.org/0000-0002-7035-087X</orcidid><orcidid>https://orcid.org/0000-0001-6287-6348</orcidid><orcidid>https://orcid.org/0000-0001-7152-9225</orcidid><orcidid>https://orcid.org/0000-0001-8593-6841</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2499 |
ispartof | Stroke (1970), 2023-08, Vol.54 (8), p.2105-2113 |
issn | 0039-2499 1524-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_2839250620 |
source | American Heart Association Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Journals@Ovid Complete |
title | Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancer%20Prediction%20With%20Machine%20Learning%20of%20Thrombi%20From%20Thrombectomy%20in%20Stroke:%20Multicenter%20Development%20and%20Validation&rft.jtitle=Stroke%20(1970)&rft.au=Heo,%20JoonNyung&rft.date=2023-08-01&rft.volume=54&rft.issue=8&rft.spage=2105&rft.epage=2113&rft.pages=2105-2113&rft.issn=0039-2499&rft.eissn=1524-4628&rft_id=info:doi/10.1161/STROKEAHA.123.043127&rft_dat=%3Cproquest_cross%3E2839250620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839250620&rft_id=info:pmid/37462056&rfr_iscdi=true |