A feed-forward loop based on aerobic glycolysis and TGF-β between tumor-associated macrophages and bladder cancer cells promoted malignant progression and immune escape

Purpose Immunotherapy with programmed cell death 1/ligand 1 (PD-1/PD-L1) checkpoint inhibitors has revolutionized the systemic treatment of solid tumors, including bladder cancer. Previous studies have shown that enhanced glycolysis, tumor-associated macrophage (TAM) infiltration, and TGF-β secretio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cancer research and clinical oncology 2023-11, Vol.149 (14), p.12867-12880
Hauptverfasser: Shen, Chengquan, Liu, Jing, Jiao, Wei, Zhang, Xuezhou, Zhao, Xinzhao, Yang, Xuecheng, Wang, Yonghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Immunotherapy with programmed cell death 1/ligand 1 (PD-1/PD-L1) checkpoint inhibitors has revolutionized the systemic treatment of solid tumors, including bladder cancer. Previous studies have shown that enhanced glycolysis, tumor-associated macrophage (TAM) infiltration, and TGF-β secretion in the tumor microenvironment (TME) are closely related to PD-1/PD-L1 inhibitor immunotherapy resistance. However, the potential mechanism of their interaction in bladder cancer has not been fully uncovered. Methods By coculturing bladder cancer cells and TAMs, we studied the relationship and interaction mechanism between tumor cell glycolysis, TAM functional remodeling, TGF-β positive feedback secretion, and PD-L1 mRNA m6A methylation in the bladder cancer microenvironment. Results Bioinformatics analysis and IHC staining found a close correlation between tumor glycolysis, M2 TAM infiltration, and the prognosis of bladder cancer patients. In Vitro experiments demonstrated that bladder cancer cells could re-educate M2 TAMs through lactate and promote TGF-β secretion via the HIF-1α signaling pathway. Reciprocally, in vitro, and in vivo experiments validated that M2 TAMs could promote glycolysis in bladder cancer cells by TGF-β via the Smad2/3 signaling pathways. Furthermore, M2 TAMs could also promote CSCs and EMT of bladder cancer cells. More importantly, we found M2 TAMs enhance PD-L1 mRNA m6A methylation by promoting METLL3 expression in bladder cancer via the TGF-β/Smad2/3 pathway in the TME. Conclusions Our study highlights a feed-forward loop based on aerobic glycolysis and TGF-β between M2 TAMs and bladder cancer cells, which may be a potential mechanism of malignant progression and immunotherapy resistance in bladder cancer.
ISSN:0171-5216
1432-1335
DOI:10.1007/s00432-023-05164-5