An investigation into the adsorption mechanism of n -butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach

The zeolitic imidazolate framework, ZIF-8, has been shown by experimental methods to have a maximum saturation adsorption capacity of 0.36 g g for -butanol from aqueous solution, equivalent to a loading of 14 butanol molecules per unit cell or 7 molecules per sodalite β-cage. Diffuse reflectance inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-07, Vol.25 (29), p.19911-19922
Hauptverfasser: Wallbridge, Samuel P, Archer, Stuart, Elsegood, Mark R J, Wagner, Jonathan L, Christie, Jamieson K, Dann, Sandra E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19922
container_issue 29
container_start_page 19911
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Wallbridge, Samuel P
Archer, Stuart
Elsegood, Mark R J
Wagner, Jonathan L
Christie, Jamieson K
Dann, Sandra E
description The zeolitic imidazolate framework, ZIF-8, has been shown by experimental methods to have a maximum saturation adsorption capacity of 0.36 g g for -butanol from aqueous solution, equivalent to a loading of 14 butanol molecules per unit cell or 7 molecules per sodalite β-cage. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the presence of hydrogen bonding between adsorbed butanol molecules within the cage; the presence of three different O-H stretching modes indicates the formation of butanol clusters of varying size. molecular dynamics simulations show the formation of intermolecular hydrogen bonding between the butanol molecules, with an average hydrogen-bond coordination number of 0.9 after 15 ps simulation time. The simulations also uniquely demonstrate the presence of weaker interactions between the alcohol O-H group and the π-orbital of the imidazole ring on the internal surface of the cage during early stages of adsorption. The calculated adsorption energy per butanol molecule is -33.7 kJ mol , confirming that the butanol is only weakly bound, driven primarily by the hydrogen bonding. Solid-state MAS NMR spectra suggest that the adsorbed butanol molecules possess a reasonable degree of mobility in their adsorbed state, rather than being rigidly held in specific sites. 2D C- H heteronuclear correlation (HETCOR) experiments show interactions between the butanol aliphatic chain and the ZIF-8 framework experimentally, suggesting that O-H interactions with the π-orbital are only short lived. The insight gained from these results will allow the design of more efficient ways of recovering and isolating n-butanol, an important biofuel, from low-concentration solutions.
doi_str_mv 10.1039/d3cp02493h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2839247610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839247610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-248d07976cffc43626e52ee0d8415ac719bfe2c334a74d15f40101a7af003aed3</originalsourceid><addsrcrecordid>eNpdkclKxTAUhoMoDlc3PoAE3IhQTZq0ad3JdQRBF7pxU06TU2-kTWrTivcNfGzjuHB1Bj7-M_yE7HJ2xJkoj43QPUtlKRYrZJPLXCQlK-TqX67yDbIVwjNjjGdcrJMNoWRWyExtkvdTR617xTDaJxit_6xGT8cFUjDBD_1Xr0O9AGdDR31DHU3qaQTnW1ov6eP1RVKcUKDad7V1aCi-9TjYDt0ILQVnKNRR1EYh2vkW9dTCQM3SQWd1oND3gwe92CZrDbQBd37ijDxcnN_Pr5Kb28vr-elNokXGxySVhWGqVLluGi1FnuaYpYjMFJJnoBUv6wZTLYQEJQ3PGsk446CgYUwAGjEjB9-6cezLFO-uOhs0ti049FOo0kKUqVR5_OyM7P9Dn_00uLhdpCQvWaqEjNThN6UHH8KATdXH62FYVpxVn_5UZ2J-9-XPVYT3fiSnukPzh_4aIj4ANVKLZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841902734</pqid></control><display><type>article</type><title>An investigation into the adsorption mechanism of n -butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Wallbridge, Samuel P ; Archer, Stuart ; Elsegood, Mark R J ; Wagner, Jonathan L ; Christie, Jamieson K ; Dann, Sandra E</creator><creatorcontrib>Wallbridge, Samuel P ; Archer, Stuart ; Elsegood, Mark R J ; Wagner, Jonathan L ; Christie, Jamieson K ; Dann, Sandra E</creatorcontrib><description>The zeolitic imidazolate framework, ZIF-8, has been shown by experimental methods to have a maximum saturation adsorption capacity of 0.36 g g for -butanol from aqueous solution, equivalent to a loading of 14 butanol molecules per unit cell or 7 molecules per sodalite β-cage. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the presence of hydrogen bonding between adsorbed butanol molecules within the cage; the presence of three different O-H stretching modes indicates the formation of butanol clusters of varying size. molecular dynamics simulations show the formation of intermolecular hydrogen bonding between the butanol molecules, with an average hydrogen-bond coordination number of 0.9 after 15 ps simulation time. The simulations also uniquely demonstrate the presence of weaker interactions between the alcohol O-H group and the π-orbital of the imidazole ring on the internal surface of the cage during early stages of adsorption. The calculated adsorption energy per butanol molecule is -33.7 kJ mol , confirming that the butanol is only weakly bound, driven primarily by the hydrogen bonding. Solid-state MAS NMR spectra suggest that the adsorbed butanol molecules possess a reasonable degree of mobility in their adsorbed state, rather than being rigidly held in specific sites. 2D C- H heteronuclear correlation (HETCOR) experiments show interactions between the butanol aliphatic chain and the ZIF-8 framework experimentally, suggesting that O-H interactions with the π-orbital are only short lived. The insight gained from these results will allow the design of more efficient ways of recovering and isolating n-butanol, an important biofuel, from low-concentration solutions.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp02493h</identifier><identifier>PMID: 37458457</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Aqueous solutions ; Biofuels ; Bonding strength ; Butanol ; Cages ; Coordination numbers ; Fourier transforms ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Imidazole ; Metal-organic frameworks ; Molecular chains ; Molecular dynamics ; NMR spectroscopy ; Simulation ; Sodalite ; Spectrum analysis ; Unit cell ; Zeolites</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-07, Vol.25 (29), p.19911-19922</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-248d07976cffc43626e52ee0d8415ac719bfe2c334a74d15f40101a7af003aed3</citedby><cites>FETCH-LOGICAL-c351t-248d07976cffc43626e52ee0d8415ac719bfe2c334a74d15f40101a7af003aed3</cites><orcidid>0000-0001-6105-561X ; 0000-0002-1075-8427 ; 0000-0002-8984-4175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37458457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallbridge, Samuel P</creatorcontrib><creatorcontrib>Archer, Stuart</creatorcontrib><creatorcontrib>Elsegood, Mark R J</creatorcontrib><creatorcontrib>Wagner, Jonathan L</creatorcontrib><creatorcontrib>Christie, Jamieson K</creatorcontrib><creatorcontrib>Dann, Sandra E</creatorcontrib><title>An investigation into the adsorption mechanism of n -butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The zeolitic imidazolate framework, ZIF-8, has been shown by experimental methods to have a maximum saturation adsorption capacity of 0.36 g g for -butanol from aqueous solution, equivalent to a loading of 14 butanol molecules per unit cell or 7 molecules per sodalite β-cage. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the presence of hydrogen bonding between adsorbed butanol molecules within the cage; the presence of three different O-H stretching modes indicates the formation of butanol clusters of varying size. molecular dynamics simulations show the formation of intermolecular hydrogen bonding between the butanol molecules, with an average hydrogen-bond coordination number of 0.9 after 15 ps simulation time. The simulations also uniquely demonstrate the presence of weaker interactions between the alcohol O-H group and the π-orbital of the imidazole ring on the internal surface of the cage during early stages of adsorption. The calculated adsorption energy per butanol molecule is -33.7 kJ mol , confirming that the butanol is only weakly bound, driven primarily by the hydrogen bonding. Solid-state MAS NMR spectra suggest that the adsorbed butanol molecules possess a reasonable degree of mobility in their adsorbed state, rather than being rigidly held in specific sites. 2D C- H heteronuclear correlation (HETCOR) experiments show interactions between the butanol aliphatic chain and the ZIF-8 framework experimentally, suggesting that O-H interactions with the π-orbital are only short lived. The insight gained from these results will allow the design of more efficient ways of recovering and isolating n-butanol, an important biofuel, from low-concentration solutions.</description><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>Biofuels</subject><subject>Bonding strength</subject><subject>Butanol</subject><subject>Cages</subject><subject>Coordination numbers</subject><subject>Fourier transforms</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Imidazole</subject><subject>Metal-organic frameworks</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>NMR spectroscopy</subject><subject>Simulation</subject><subject>Sodalite</subject><subject>Spectrum analysis</subject><subject>Unit cell</subject><subject>Zeolites</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkclKxTAUhoMoDlc3PoAE3IhQTZq0ad3JdQRBF7pxU06TU2-kTWrTivcNfGzjuHB1Bj7-M_yE7HJ2xJkoj43QPUtlKRYrZJPLXCQlK-TqX67yDbIVwjNjjGdcrJMNoWRWyExtkvdTR617xTDaJxit_6xGT8cFUjDBD_1Xr0O9AGdDR31DHU3qaQTnW1ov6eP1RVKcUKDad7V1aCi-9TjYDt0ILQVnKNRR1EYh2vkW9dTCQM3SQWd1oND3gwe92CZrDbQBd37ijDxcnN_Pr5Kb28vr-elNokXGxySVhWGqVLluGi1FnuaYpYjMFJJnoBUv6wZTLYQEJQ3PGsk446CgYUwAGjEjB9-6cezLFO-uOhs0ti049FOo0kKUqVR5_OyM7P9Dn_00uLhdpCQvWaqEjNThN6UHH8KATdXH62FYVpxVn_5UZ2J-9-XPVYT3fiSnukPzh_4aIj4ANVKLZQ</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Wallbridge, Samuel P</creator><creator>Archer, Stuart</creator><creator>Elsegood, Mark R J</creator><creator>Wagner, Jonathan L</creator><creator>Christie, Jamieson K</creator><creator>Dann, Sandra E</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6105-561X</orcidid><orcidid>https://orcid.org/0000-0002-1075-8427</orcidid><orcidid>https://orcid.org/0000-0002-8984-4175</orcidid></search><sort><creationdate>20230726</creationdate><title>An investigation into the adsorption mechanism of n -butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach</title><author>Wallbridge, Samuel P ; Archer, Stuart ; Elsegood, Mark R J ; Wagner, Jonathan L ; Christie, Jamieson K ; Dann, Sandra E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-248d07976cffc43626e52ee0d8415ac719bfe2c334a74d15f40101a7af003aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>Biofuels</topic><topic>Bonding strength</topic><topic>Butanol</topic><topic>Cages</topic><topic>Coordination numbers</topic><topic>Fourier transforms</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Imidazole</topic><topic>Metal-organic frameworks</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>NMR spectroscopy</topic><topic>Simulation</topic><topic>Sodalite</topic><topic>Spectrum analysis</topic><topic>Unit cell</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallbridge, Samuel P</creatorcontrib><creatorcontrib>Archer, Stuart</creatorcontrib><creatorcontrib>Elsegood, Mark R J</creatorcontrib><creatorcontrib>Wagner, Jonathan L</creatorcontrib><creatorcontrib>Christie, Jamieson K</creatorcontrib><creatorcontrib>Dann, Sandra E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallbridge, Samuel P</au><au>Archer, Stuart</au><au>Elsegood, Mark R J</au><au>Wagner, Jonathan L</au><au>Christie, Jamieson K</au><au>Dann, Sandra E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation into the adsorption mechanism of n -butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-07-26</date><risdate>2023</risdate><volume>25</volume><issue>29</issue><spage>19911</spage><epage>19922</epage><pages>19911-19922</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The zeolitic imidazolate framework, ZIF-8, has been shown by experimental methods to have a maximum saturation adsorption capacity of 0.36 g g for -butanol from aqueous solution, equivalent to a loading of 14 butanol molecules per unit cell or 7 molecules per sodalite β-cage. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the presence of hydrogen bonding between adsorbed butanol molecules within the cage; the presence of three different O-H stretching modes indicates the formation of butanol clusters of varying size. molecular dynamics simulations show the formation of intermolecular hydrogen bonding between the butanol molecules, with an average hydrogen-bond coordination number of 0.9 after 15 ps simulation time. The simulations also uniquely demonstrate the presence of weaker interactions between the alcohol O-H group and the π-orbital of the imidazole ring on the internal surface of the cage during early stages of adsorption. The calculated adsorption energy per butanol molecule is -33.7 kJ mol , confirming that the butanol is only weakly bound, driven primarily by the hydrogen bonding. Solid-state MAS NMR spectra suggest that the adsorbed butanol molecules possess a reasonable degree of mobility in their adsorbed state, rather than being rigidly held in specific sites. 2D C- H heteronuclear correlation (HETCOR) experiments show interactions between the butanol aliphatic chain and the ZIF-8 framework experimentally, suggesting that O-H interactions with the π-orbital are only short lived. The insight gained from these results will allow the design of more efficient ways of recovering and isolating n-butanol, an important biofuel, from low-concentration solutions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37458457</pmid><doi>10.1039/d3cp02493h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6105-561X</orcidid><orcidid>https://orcid.org/0000-0002-1075-8427</orcidid><orcidid>https://orcid.org/0000-0002-8984-4175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-07, Vol.25 (29), p.19911-19922
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2839247610
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Adsorption
Aqueous solutions
Biofuels
Bonding strength
Butanol
Cages
Coordination numbers
Fourier transforms
Hydrogen
Hydrogen bonding
Hydrogen bonds
Imidazole
Metal-organic frameworks
Molecular chains
Molecular dynamics
NMR spectroscopy
Simulation
Sodalite
Spectrum analysis
Unit cell
Zeolites
title An investigation into the adsorption mechanism of n -butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20into%20the%20adsorption%20mechanism%20of%20n%20-butanol%20by%20ZIF-8:%20a%20combined%20experimental%20and%20ab%20initio%20molecular%20dynamics%20approach&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wallbridge,%20Samuel%20P&rft.date=2023-07-26&rft.volume=25&rft.issue=29&rft.spage=19911&rft.epage=19922&rft.pages=19911-19922&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp02493h&rft_dat=%3Cproquest_cross%3E2839247610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841902734&rft_id=info:pmid/37458457&rfr_iscdi=true