More on the distance distribution of BCH codes

We derive a new estimate for the error term in the binomial approximation to the distance distribution of BCH codes. This is an improvement on the earlier bounds by Kasami-Fujiwara-Lin (1985), Vladuts-Skorobogatov (1991), and Krasikov-Litsyn (1995).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1999-01, Vol.45 (1), p.251-255
Hauptverfasser: Keren, O., Litsyn, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 1
container_start_page 251
container_title IEEE transactions on information theory
container_volume 45
creator Keren, O.
Litsyn, S.
description We derive a new estimate for the error term in the binomial approximation to the distance distribution of BCH codes. This is an improvement on the earlier bounds by Kasami-Fujiwara-Lin (1985), Vladuts-Skorobogatov (1991), and Krasikov-Litsyn (1995).
doi_str_mv 10.1109/18.746800
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28389538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>746800</ieee_id><sourcerecordid>39579445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-135e678995d6dd621a37f8ac5e049a6579ad9df8be6e185a3601bac3d9098bd93</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQpDKxMEQMSQ4Kv_ohvhAooUhELzJYTX0SqNi52MvDvCUrFwHR3eh-dTsfYJfACgOMdmKKU2nB-xGagVJmjVvKYzTgHk6OU5pSdpbQZR6lgMWPFa4iUhS7rPynzbepdV09NbKuhb8ckNNnDcpXVwVM6ZyeN2ya6ONQ5-3h6fF-u8vXb88vyfp3Xgss-B6FIlwZRee29XoATZWNcrYhLdFqV6Dz6xlSkCYxyQnOoXC08cjSVRzFnN9PefQxfA6Xe7tpU03brOgpDsgsjDCphRnj9D27CELvxNguoEEpAGNHthOoYUorU2H1sdy5-W-D2920WjJ3eNtqrybZE9OcO4Q9D42UK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195917191</pqid></control><display><type>article</type><title>More on the distance distribution of BCH codes</title><source>IEEE Electronic Library (IEL)</source><creator>Keren, O. ; Litsyn, S.</creator><creatorcontrib>Keren, O. ; Litsyn, S.</creatorcontrib><description>We derive a new estimate for the error term in the binomial approximation to the distance distribution of BCH codes. This is an improvement on the earlier bounds by Kasami-Fujiwara-Lin (1985), Vladuts-Skorobogatov (1991), and Krasikov-Litsyn (1995).</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.746800</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Electrical engineering ; Linear programming ; Mathematical models ; Mathematics ; Polynomials ; Upper bound</subject><ispartof>IEEE transactions on information theory, 1999-01, Vol.45 (1), p.251-255</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-135e678995d6dd621a37f8ac5e049a6579ad9df8be6e185a3601bac3d9098bd93</citedby><cites>FETCH-LOGICAL-c304t-135e678995d6dd621a37f8ac5e049a6579ad9df8be6e185a3601bac3d9098bd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/746800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/746800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Keren, O.</creatorcontrib><creatorcontrib>Litsyn, S.</creatorcontrib><title>More on the distance distribution of BCH codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We derive a new estimate for the error term in the binomial approximation to the distance distribution of BCH codes. This is an improvement on the earlier bounds by Kasami-Fujiwara-Lin (1985), Vladuts-Skorobogatov (1991), and Krasikov-Litsyn (1995).</description><subject>Codes</subject><subject>Electrical engineering</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0D1PwzAQBmALgUQpDKxMEQMSQ4Kv_ohvhAooUhELzJYTX0SqNi52MvDvCUrFwHR3eh-dTsfYJfACgOMdmKKU2nB-xGagVJmjVvKYzTgHk6OU5pSdpbQZR6lgMWPFa4iUhS7rPynzbepdV09NbKuhb8ckNNnDcpXVwVM6ZyeN2ya6ONQ5-3h6fF-u8vXb88vyfp3Xgss-B6FIlwZRee29XoATZWNcrYhLdFqV6Dz6xlSkCYxyQnOoXC08cjSVRzFnN9PefQxfA6Xe7tpU03brOgpDsgsjDCphRnj9D27CELvxNguoEEpAGNHthOoYUorU2H1sdy5-W-D2920WjJ3eNtqrybZE9OcO4Q9D42UK</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Keren, O.</creator><creator>Litsyn, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199901</creationdate><title>More on the distance distribution of BCH codes</title><author>Keren, O. ; Litsyn, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-135e678995d6dd621a37f8ac5e049a6579ad9df8be6e185a3601bac3d9098bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Codes</topic><topic>Electrical engineering</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keren, O.</creatorcontrib><creatorcontrib>Litsyn, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keren, O.</au><au>Litsyn, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>More on the distance distribution of BCH codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1999-01</date><risdate>1999</risdate><volume>45</volume><issue>1</issue><spage>251</spage><epage>255</epage><pages>251-255</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We derive a new estimate for the error term in the binomial approximation to the distance distribution of BCH codes. This is an improvement on the earlier bounds by Kasami-Fujiwara-Lin (1985), Vladuts-Skorobogatov (1991), and Krasikov-Litsyn (1995).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.746800</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1999-01, Vol.45 (1), p.251-255
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_28389538
source IEEE Electronic Library (IEL)
subjects Codes
Electrical engineering
Linear programming
Mathematical models
Mathematics
Polynomials
Upper bound
title More on the distance distribution of BCH codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=More%20on%20the%20distance%20distribution%20of%20BCH%20codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Keren,%20O.&rft.date=1999-01&rft.volume=45&rft.issue=1&rft.spage=251&rft.epage=255&rft.pages=251-255&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.746800&rft_dat=%3Cproquest_RIE%3E39579445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195917191&rft_id=info:pmid/&rft_ieee_id=746800&rfr_iscdi=true