Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints

The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1976-10, Vol.21 (5), p.641-650
1. Verfasser: Lin, J G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 5
container_start_page 641
container_title IEEE transactions on automatic control
container_volume 21
creator Lin, J G
description The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designers, performance analyzers, control agents, and decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices. That this method is effective for general applications is clearly demonstrated by examples with various kinds of complexity. New necessary and sufficient conditions for Pareto optimality, local Pareto optimality, and local maximal index vectors are also presented. These conditions and the method are useful for both computation and analysis. New observations on a generalized classical Pareto-optimum problem are thereby obtained.
doi_str_mv 10.1109/TAC.1976.1101338
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28388523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1101338</ieee_id><sourcerecordid>28388523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ce0bb0b2142f7d57348274567c5359d0d3db98ebe01c4c81fdbf7f1d9320802c3</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoWKt3wcuevG3N527irRS_oKKHejVssrO4JW22m6zQ_94sLXjU0_CY3xuG9xC6JnhGCFZ3q_liRlRZjIowJk_QhAghcyooO0UTjInMFZXFOboIYZ1kwTmZoM_XwcW2c5B7swYb22_Iut4bB5twn71XPUSf-y62m8plwbshtn4bMrPPNhC_fJ35ZuQ76DPYDZVr4z6ziYh91W5juERnTeUCXB3nFH08PqwWz_ny7ellMV_mlgkecwvYGGwo4bQpa1EyLmnJRVFawYSqcc1qoyQYwMRyK0lTm6ZsSK0YxRJTy6bo9nA3_bIbIES9aYMF56ot-CFoKlVJBVf_AJmUKbK_QVpQohRPID6Atvch9NDork9p9XtNsB6r0akaPVajj9Uky83B0gLAL37c_gCHLouJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22621994</pqid></control><display><type>article</type><title>Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, J G</creator><creatorcontrib>Lin, J G</creatorcontrib><description>The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designers, performance analyzers, control agents, and decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices. That this method is effective for general applications is clearly demonstrated by examples with various kinds of complexity. New necessary and sufficient conditions for Pareto optimality, local Pareto optimality, and local maximal index vectors are also presented. These conditions and the method are useful for both computation and analysis. New observations on a generalized classical Pareto-optimum problem are thereby obtained.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1976.1101338</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Control systems ; Electric variables control ; Performance analysis ; Sufficient conditions</subject><ispartof>IEEE transactions on automatic control, 1976-10, Vol.21 (5), p.641-650</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ce0bb0b2142f7d57348274567c5359d0d3db98ebe01c4c81fdbf7f1d9320802c3</citedby><cites>FETCH-LOGICAL-c354t-ce0bb0b2142f7d57348274567c5359d0d3db98ebe01c4c81fdbf7f1d9320802c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1101338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1101338$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, J G</creatorcontrib><title>Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designers, performance analyzers, control agents, and decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices. That this method is effective for general applications is clearly demonstrated by examples with various kinds of complexity. New necessary and sufficient conditions for Pareto optimality, local Pareto optimality, and local maximal index vectors are also presented. These conditions and the method are useful for both computation and analysis. New observations on a generalized classical Pareto-optimum problem are thereby obtained.</description><subject>Computer science</subject><subject>Control systems</subject><subject>Electric variables control</subject><subject>Performance analysis</subject><subject>Sufficient conditions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNqNkc1LAzEQxYMoWKt3wcuevG3N527irRS_oKKHejVssrO4JW22m6zQ_94sLXjU0_CY3xuG9xC6JnhGCFZ3q_liRlRZjIowJk_QhAghcyooO0UTjInMFZXFOboIYZ1kwTmZoM_XwcW2c5B7swYb22_Iut4bB5twn71XPUSf-y62m8plwbshtn4bMrPPNhC_fJ35ZuQ76DPYDZVr4z6ziYh91W5juERnTeUCXB3nFH08PqwWz_ny7ellMV_mlgkecwvYGGwo4bQpa1EyLmnJRVFawYSqcc1qoyQYwMRyK0lTm6ZsSK0YxRJTy6bo9nA3_bIbIES9aYMF56ot-CFoKlVJBVf_AJmUKbK_QVpQohRPID6Atvch9NDork9p9XtNsB6r0akaPVajj9Uky83B0gLAL37c_gCHLouJ</recordid><startdate>19761001</startdate><enddate>19761001</enddate><creator>Lin, J G</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19761001</creationdate><title>Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints</title><author>Lin, J G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ce0bb0b2142f7d57348274567c5359d0d3db98ebe01c4c81fdbf7f1d9320802c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Computer science</topic><topic>Control systems</topic><topic>Electric variables control</topic><topic>Performance analysis</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, J G</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, J G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1976-10-01</date><risdate>1976</risdate><volume>21</volume><issue>5</issue><spage>641</spage><epage>650</epage><pages>641-650</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designers, performance analyzers, control agents, and decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices. That this method is effective for general applications is clearly demonstrated by examples with various kinds of complexity. New necessary and sufficient conditions for Pareto optimality, local Pareto optimality, and local maximal index vectors are also presented. These conditions and the method are useful for both computation and analysis. New observations on a generalized classical Pareto-optimum problem are thereby obtained.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1976.1101338</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1976-10, Vol.21 (5), p.641-650
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28388523
source IEEE Electronic Library (IEL)
subjects Computer science
Control systems
Electric variables control
Performance analysis
Sufficient conditions
title Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-objective%20problems:%20Pareto-optimal%20solutions%20by%20method%20of%20proper%20equality%20constraints&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lin,%20J%20G&rft.date=1976-10-01&rft.volume=21&rft.issue=5&rft.spage=641&rft.epage=650&rft.pages=641-650&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1976.1101338&rft_dat=%3Cproquest_RIE%3E28388523%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22621994&rft_id=info:pmid/&rft_ieee_id=1101338&rfr_iscdi=true