Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints
The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1976-10, Vol.21 (5), p.641-650 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 650 |
---|---|
container_issue | 5 |
container_start_page | 641 |
container_title | IEEE transactions on automatic control |
container_volume | 21 |
creator | Lin, J G |
description | The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designers, performance analyzers, control agents, and decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices. That this method is effective for general applications is clearly demonstrated by examples with various kinds of complexity. New necessary and sufficient conditions for Pareto optimality, local Pareto optimality, and local maximal index vectors are also presented. These conditions and the method are useful for both computation and analysis. New observations on a generalized classical Pareto-optimum problem are thereby obtained. |
doi_str_mv | 10.1109/TAC.1976.1101338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28388523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1101338</ieee_id><sourcerecordid>28388523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ce0bb0b2142f7d57348274567c5359d0d3db98ebe01c4c81fdbf7f1d9320802c3</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoWKt3wcuevG3N527irRS_oKKHejVssrO4JW22m6zQ_94sLXjU0_CY3xuG9xC6JnhGCFZ3q_liRlRZjIowJk_QhAghcyooO0UTjInMFZXFOboIYZ1kwTmZoM_XwcW2c5B7swYb22_Iut4bB5twn71XPUSf-y62m8plwbshtn4bMrPPNhC_fJ35ZuQ76DPYDZVr4z6ziYh91W5juERnTeUCXB3nFH08PqwWz_ny7ellMV_mlgkecwvYGGwo4bQpa1EyLmnJRVFawYSqcc1qoyQYwMRyK0lTm6ZsSK0YxRJTy6bo9nA3_bIbIES9aYMF56ot-CFoKlVJBVf_AJmUKbK_QVpQohRPID6Atvch9NDork9p9XtNsB6r0akaPVajj9Uky83B0gLAL37c_gCHLouJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22621994</pqid></control><display><type>article</type><title>Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, J G</creator><creatorcontrib>Lin, J G</creatorcontrib><description>The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designers, performance analyzers, control agents, and decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices. That this method is effective for general applications is clearly demonstrated by examples with various kinds of complexity. New necessary and sufficient conditions for Pareto optimality, local Pareto optimality, and local maximal index vectors are also presented. These conditions and the method are useful for both computation and analysis. New observations on a generalized classical Pareto-optimum problem are thereby obtained.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1976.1101338</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Control systems ; Electric variables control ; Performance analysis ; Sufficient conditions</subject><ispartof>IEEE transactions on automatic control, 1976-10, Vol.21 (5), p.641-650</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ce0bb0b2142f7d57348274567c5359d0d3db98ebe01c4c81fdbf7f1d9320802c3</citedby><cites>FETCH-LOGICAL-c354t-ce0bb0b2142f7d57348274567c5359d0d3db98ebe01c4c81fdbf7f1d9320802c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1101338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1101338$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, J G</creatorcontrib><title>Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designers, performance analyzers, control agents, and decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices. That this method is effective for general applications is clearly demonstrated by examples with various kinds of complexity. New necessary and sufficient conditions for Pareto optimality, local Pareto optimality, and local maximal index vectors are also presented. These conditions and the method are useful for both computation and analysis. New observations on a generalized classical Pareto-optimum problem are thereby obtained.</description><subject>Computer science</subject><subject>Control systems</subject><subject>Electric variables control</subject><subject>Performance analysis</subject><subject>Sufficient conditions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNqNkc1LAzEQxYMoWKt3wcuevG3N527irRS_oKKHejVssrO4JW22m6zQ_94sLXjU0_CY3xuG9xC6JnhGCFZ3q_liRlRZjIowJk_QhAghcyooO0UTjInMFZXFOboIYZ1kwTmZoM_XwcW2c5B7swYb22_Iut4bB5twn71XPUSf-y62m8plwbshtn4bMrPPNhC_fJ35ZuQ76DPYDZVr4z6ziYh91W5juERnTeUCXB3nFH08PqwWz_ny7ellMV_mlgkecwvYGGwo4bQpa1EyLmnJRVFawYSqcc1qoyQYwMRyK0lTm6ZsSK0YxRJTy6bo9nA3_bIbIES9aYMF56ot-CFoKlVJBVf_AJmUKbK_QVpQohRPID6Atvch9NDork9p9XtNsB6r0akaPVajj9Uky83B0gLAL37c_gCHLouJ</recordid><startdate>19761001</startdate><enddate>19761001</enddate><creator>Lin, J G</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19761001</creationdate><title>Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints</title><author>Lin, J G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ce0bb0b2142f7d57348274567c5359d0d3db98ebe01c4c81fdbf7f1d9320802c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Computer science</topic><topic>Control systems</topic><topic>Electric variables control</topic><topic>Performance analysis</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, J G</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, J G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1976-10-01</date><risdate>1976</risdate><volume>21</volume><issue>5</issue><spage>641</spage><epage>650</epage><pages>641-650</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The method of proper equality constraints for obtaining the set P of all Pareto-optimal solutions of a general multiple-objective problem and the set M of all performance index vectors attainable by the Pareto-optimal solutions is presented in this paper. These sets are very useful for those designers, performance analyzers, control agents, and decision makers who are faced with multiple objectives to make appropriate compromises, tradeoffs or choices. That this method is effective for general applications is clearly demonstrated by examples with various kinds of complexity. New necessary and sufficient conditions for Pareto optimality, local Pareto optimality, and local maximal index vectors are also presented. These conditions and the method are useful for both computation and analysis. New observations on a generalized classical Pareto-optimum problem are thereby obtained.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1976.1101338</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1976-10, Vol.21 (5), p.641-650 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28388523 |
source | IEEE Electronic Library (IEL) |
subjects | Computer science Control systems Electric variables control Performance analysis Sufficient conditions |
title | Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-objective%20problems:%20Pareto-optimal%20solutions%20by%20method%20of%20proper%20equality%20constraints&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lin,%20J%20G&rft.date=1976-10-01&rft.volume=21&rft.issue=5&rft.spage=641&rft.epage=650&rft.pages=641-650&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1976.1101338&rft_dat=%3Cproquest_RIE%3E28388523%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22621994&rft_id=info:pmid/&rft_ieee_id=1101338&rfr_iscdi=true |