Radiative heat transfer and hydrostatic stability in nocturnal fog
We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numer...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2004-11, Vol.113 (2), p.273-286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 2 |
container_start_page | 273 |
container_title | Boundary-layer meteorology |
container_volume | 113 |
creator | NISHIKAWA, Toru MARUYAMA, Shigenao SAKAI, Seigo |
description | We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10^sup -3^ kg m^sup -3^;, the temperature profile within the fog becomes "S" shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/B:BOUN.0000039376.13527.5e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28384679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28384679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-45004da38e33f41084299bfbc22c3ca5a5eee0cd11884efd61329bec41514c7d3</originalsourceid><addsrcrecordid>eNqFkd9LwzAQx4MoOKf_QxnoW2uulzTp3uzwFwwH4p5Dmqauo2tn0wn77003YeCL93Ic97nvcfclZAI0AhrjfTbNFsu3iA6BKYokAuSxiLg9IyPgAkNgIj4nI99PQonALsmVc2tfCuB0RLJ3XVS6r75tsLK6D_pON660XaCbIljti651vW-bwKe8qqt-H1RN0LSm33WNroOy_bwmF6Wunb35zWOyfHr8mL2E88Xz6-xhHhqUtA8Zp5QVGqVFLBlQyeI0zcvcxLFBo7nm1lpqCgApmS2LBDBOc2sYcGBGFDgmd0fdbdd-7azr1aZyxta1bmy7cyqWKFki0n9BEAnlgAM4-QOu28NZTgn0apQL6aHpETL-F66zpdp21UZ3ewVUDSaoTA0mqJMJ6mCC4tYP3_5u0M7ouvTfNZU7KSQgUoAEfwCOPYfF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>738380578</pqid></control><display><type>article</type><title>Radiative heat transfer and hydrostatic stability in nocturnal fog</title><source>Springer Nature - Complete Springer Journals</source><creator>NISHIKAWA, Toru ; MARUYAMA, Shigenao ; SAKAI, Seigo</creator><creatorcontrib>NISHIKAWA, Toru ; MARUYAMA, Shigenao ; SAKAI, Seigo</creatorcontrib><description>We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10^sup -3^ kg m^sup -3^;, the temperature profile within the fog becomes "S" shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1023/B:BOUN.0000039376.13527.5e</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Atmosphere ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fog ; Heat transfer ; Meteorology ; Water content ; Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><ispartof>Boundary-layer meteorology, 2004-11, Vol.113 (2), p.273-286</ispartof><rights>2004 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-45004da38e33f41084299bfbc22c3ca5a5eee0cd11884efd61329bec41514c7d3</citedby><cites>FETCH-LOGICAL-c380t-45004da38e33f41084299bfbc22c3ca5a5eee0cd11884efd61329bec41514c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16179116$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NISHIKAWA, Toru</creatorcontrib><creatorcontrib>MARUYAMA, Shigenao</creatorcontrib><creatorcontrib>SAKAI, Seigo</creatorcontrib><title>Radiative heat transfer and hydrostatic stability in nocturnal fog</title><title>Boundary-layer meteorology</title><description>We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10^sup -3^ kg m^sup -3^;, the temperature profile within the fog becomes "S" shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.[PUBLICATION ABSTRACT]</description><subject>Atmosphere</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fog</subject><subject>Heat transfer</subject><subject>Meteorology</subject><subject>Water content</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkd9LwzAQx4MoOKf_QxnoW2uulzTp3uzwFwwH4p5Dmqauo2tn0wn77003YeCL93Ic97nvcfclZAI0AhrjfTbNFsu3iA6BKYokAuSxiLg9IyPgAkNgIj4nI99PQonALsmVc2tfCuB0RLJ3XVS6r75tsLK6D_pON660XaCbIljti651vW-bwKe8qqt-H1RN0LSm33WNroOy_bwmF6Wunb35zWOyfHr8mL2E88Xz6-xhHhqUtA8Zp5QVGqVFLBlQyeI0zcvcxLFBo7nm1lpqCgApmS2LBDBOc2sYcGBGFDgmd0fdbdd-7azr1aZyxta1bmy7cyqWKFki0n9BEAnlgAM4-QOu28NZTgn0apQL6aHpETL-F66zpdp21UZ3ewVUDSaoTA0mqJMJ6mCC4tYP3_5u0M7ouvTfNZU7KSQgUoAEfwCOPYfF</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>NISHIKAWA, Toru</creator><creator>MARUYAMA, Shigenao</creator><creator>SAKAI, Seigo</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7U5</scope></search><sort><creationdate>20041101</creationdate><title>Radiative heat transfer and hydrostatic stability in nocturnal fog</title><author>NISHIKAWA, Toru ; MARUYAMA, Shigenao ; SAKAI, Seigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-45004da38e33f41084299bfbc22c3ca5a5eee0cd11884efd61329bec41514c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Atmosphere</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fog</topic><topic>Heat transfer</topic><topic>Meteorology</topic><topic>Water content</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NISHIKAWA, Toru</creatorcontrib><creatorcontrib>MARUYAMA, Shigenao</creatorcontrib><creatorcontrib>SAKAI, Seigo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NISHIKAWA, Toru</au><au>MARUYAMA, Shigenao</au><au>SAKAI, Seigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative heat transfer and hydrostatic stability in nocturnal fog</atitle><jtitle>Boundary-layer meteorology</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>113</volume><issue>2</issue><spage>273</spage><epage>286</epage><pages>273-286</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10^sup -3^ kg m^sup -3^;, the temperature profile within the fog becomes "S" shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/B:BOUN.0000039376.13527.5e</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2004-11, Vol.113 (2), p.273-286 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_miscellaneous_28384679 |
source | Springer Nature - Complete Springer Journals |
subjects | Atmosphere Earth, ocean, space Exact sciences and technology External geophysics Fog Heat transfer Meteorology Water content Water in the atmosphere (humidity, clouds, evaporation, precipitation) |
title | Radiative heat transfer and hydrostatic stability in nocturnal fog |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20heat%20transfer%20and%20hydrostatic%20stability%20in%20nocturnal%20fog&rft.jtitle=Boundary-layer%20meteorology&rft.au=NISHIKAWA,%20Toru&rft.date=2004-11-01&rft.volume=113&rft.issue=2&rft.spage=273&rft.epage=286&rft.pages=273-286&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1023/B:BOUN.0000039376.13527.5e&rft_dat=%3Cproquest_cross%3E28384679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=738380578&rft_id=info:pmid/&rfr_iscdi=true |