Radiative heat transfer and hydrostatic stability in nocturnal fog

We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2004-11, Vol.113 (2), p.273-286
Hauptverfasser: NISHIKAWA, Toru, MARUYAMA, Shigenao, SAKAI, Seigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 2
container_start_page 273
container_title Boundary-layer meteorology
container_volume 113
creator NISHIKAWA, Toru
MARUYAMA, Shigenao
SAKAI, Seigo
description We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10^sup -3^ kg m^sup -3^;, the temperature profile within the fog becomes "S" shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/B:BOUN.0000039376.13527.5e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28384679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28384679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-45004da38e33f41084299bfbc22c3ca5a5eee0cd11884efd61329bec41514c7d3</originalsourceid><addsrcrecordid>eNqFkd9LwzAQx4MoOKf_QxnoW2uulzTp3uzwFwwH4p5Dmqauo2tn0wn77003YeCL93Ic97nvcfclZAI0AhrjfTbNFsu3iA6BKYokAuSxiLg9IyPgAkNgIj4nI99PQonALsmVc2tfCuB0RLJ3XVS6r75tsLK6D_pON660XaCbIljti651vW-bwKe8qqt-H1RN0LSm33WNroOy_bwmF6Wunb35zWOyfHr8mL2E88Xz6-xhHhqUtA8Zp5QVGqVFLBlQyeI0zcvcxLFBo7nm1lpqCgApmS2LBDBOc2sYcGBGFDgmd0fdbdd-7azr1aZyxta1bmy7cyqWKFki0n9BEAnlgAM4-QOu28NZTgn0apQL6aHpETL-F66zpdp21UZ3ewVUDSaoTA0mqJMJ6mCC4tYP3_5u0M7ouvTfNZU7KSQgUoAEfwCOPYfF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>738380578</pqid></control><display><type>article</type><title>Radiative heat transfer and hydrostatic stability in nocturnal fog</title><source>Springer Nature - Complete Springer Journals</source><creator>NISHIKAWA, Toru ; MARUYAMA, Shigenao ; SAKAI, Seigo</creator><creatorcontrib>NISHIKAWA, Toru ; MARUYAMA, Shigenao ; SAKAI, Seigo</creatorcontrib><description>We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10^sup -3^ kg m^sup -3^;, the temperature profile within the fog becomes "S" shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1023/B:BOUN.0000039376.13527.5e</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Atmosphere ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fog ; Heat transfer ; Meteorology ; Water content ; Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><ispartof>Boundary-layer meteorology, 2004-11, Vol.113 (2), p.273-286</ispartof><rights>2004 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-45004da38e33f41084299bfbc22c3ca5a5eee0cd11884efd61329bec41514c7d3</citedby><cites>FETCH-LOGICAL-c380t-45004da38e33f41084299bfbc22c3ca5a5eee0cd11884efd61329bec41514c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16179116$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NISHIKAWA, Toru</creatorcontrib><creatorcontrib>MARUYAMA, Shigenao</creatorcontrib><creatorcontrib>SAKAI, Seigo</creatorcontrib><title>Radiative heat transfer and hydrostatic stability in nocturnal fog</title><title>Boundary-layer meteorology</title><description>We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10^sup -3^ kg m^sup -3^;, the temperature profile within the fog becomes "S" shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.[PUBLICATION ABSTRACT]</description><subject>Atmosphere</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fog</subject><subject>Heat transfer</subject><subject>Meteorology</subject><subject>Water content</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkd9LwzAQx4MoOKf_QxnoW2uulzTp3uzwFwwH4p5Dmqauo2tn0wn77003YeCL93Ic97nvcfclZAI0AhrjfTbNFsu3iA6BKYokAuSxiLg9IyPgAkNgIj4nI99PQonALsmVc2tfCuB0RLJ3XVS6r75tsLK6D_pON660XaCbIljti651vW-bwKe8qqt-H1RN0LSm33WNroOy_bwmF6Wunb35zWOyfHr8mL2E88Xz6-xhHhqUtA8Zp5QVGqVFLBlQyeI0zcvcxLFBo7nm1lpqCgApmS2LBDBOc2sYcGBGFDgmd0fdbdd-7azr1aZyxta1bmy7cyqWKFki0n9BEAnlgAM4-QOu28NZTgn0apQL6aHpETL-F66zpdp21UZ3ewVUDSaoTA0mqJMJ6mCC4tYP3_5u0M7ouvTfNZU7KSQgUoAEfwCOPYfF</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>NISHIKAWA, Toru</creator><creator>MARUYAMA, Shigenao</creator><creator>SAKAI, Seigo</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7U5</scope></search><sort><creationdate>20041101</creationdate><title>Radiative heat transfer and hydrostatic stability in nocturnal fog</title><author>NISHIKAWA, Toru ; MARUYAMA, Shigenao ; SAKAI, Seigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-45004da38e33f41084299bfbc22c3ca5a5eee0cd11884efd61329bec41514c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Atmosphere</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fog</topic><topic>Heat transfer</topic><topic>Meteorology</topic><topic>Water content</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NISHIKAWA, Toru</creatorcontrib><creatorcontrib>MARUYAMA, Shigenao</creatorcontrib><creatorcontrib>SAKAI, Seigo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NISHIKAWA, Toru</au><au>MARUYAMA, Shigenao</au><au>SAKAI, Seigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative heat transfer and hydrostatic stability in nocturnal fog</atitle><jtitle>Boundary-layer meteorology</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>113</volume><issue>2</issue><spage>273</spage><epage>286</epage><pages>273-286</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM^sup 2^), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-μm droplet diameter and liquid water content of 0.1 × 10^sup -3^ kg m^sup -3^;, the temperature profile within the fog becomes "S" shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-μm diameter droplet, no strong convective instability layer forms, whereas for a 10-μm diameter droplet a strong convective instability is observed.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/B:BOUN.0000039376.13527.5e</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2004-11, Vol.113 (2), p.273-286
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_28384679
source Springer Nature - Complete Springer Journals
subjects Atmosphere
Earth, ocean, space
Exact sciences and technology
External geophysics
Fog
Heat transfer
Meteorology
Water content
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
title Radiative heat transfer and hydrostatic stability in nocturnal fog
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20heat%20transfer%20and%20hydrostatic%20stability%20in%20nocturnal%20fog&rft.jtitle=Boundary-layer%20meteorology&rft.au=NISHIKAWA,%20Toru&rft.date=2004-11-01&rft.volume=113&rft.issue=2&rft.spage=273&rft.epage=286&rft.pages=273-286&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1023/B:BOUN.0000039376.13527.5e&rft_dat=%3Cproquest_cross%3E28384679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=738380578&rft_id=info:pmid/&rfr_iscdi=true