Amenability and coamenability of algebraic quantum groups
We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obta...
Gespeichert in:
Veröffentlicht in: | International journal of mathematics and mathematical sciences 2002-01, Vol.31 (10), p.577-601 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 601 |
---|---|
container_issue | 10 |
container_start_page | 577 |
container_title | International journal of mathematics and mathematical sciences |
container_volume | 31 |
creator | Bedos, Erik Murphy, Gerard J Tuset, Lars |
description | We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obtained. Coamenability is shown to have interesting consequences for the modular theory in the case that the algebraic quantum group is of compact type. |
doi_str_mv | 10.1155/S016117120210603 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28384262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28384262</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_283842623</originalsourceid><addsrcrecordid>eNqNij0PgjAUABujifixO3ZyQ_sKlDoao3HXnTywkJrSAqWD_96YODg6XXJ3hGyA7QCybH9jIABy4IwDEyyZkAiEzGOW8mxKok-NP3lOFt4_GQPJeRaRw7FVFktt9PiiaB-0cvhjXE3RNKocUFe0D2jH0NJmcKHzKzKr0Xi1_nJJtpfz_XSNu8H1QfmxaLWvlDFolQu-4DKRKRc8-Xt8Axt6QE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28384262</pqid></control><display><type>article</type><title>Amenability and coamenability of algebraic quantum groups</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bedos, Erik ; Murphy, Gerard J ; Tuset, Lars</creator><creatorcontrib>Bedos, Erik ; Murphy, Gerard J ; Tuset, Lars</creatorcontrib><description>We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obtained. Coamenability is shown to have interesting consequences for the modular theory in the case that the algebraic quantum group is of compact type.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/S016117120210603</identifier><language>eng</language><ispartof>International journal of mathematics and mathematical sciences, 2002-01, Vol.31 (10), p.577-601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Bedos, Erik</creatorcontrib><creatorcontrib>Murphy, Gerard J</creatorcontrib><creatorcontrib>Tuset, Lars</creatorcontrib><title>Amenability and coamenability of algebraic quantum groups</title><title>International journal of mathematics and mathematical sciences</title><description>We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obtained. Coamenability is shown to have interesting consequences for the modular theory in the case that the algebraic quantum group is of compact type.</description><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNij0PgjAUABujifixO3ZyQ_sKlDoao3HXnTywkJrSAqWD_96YODg6XXJ3hGyA7QCybH9jIABy4IwDEyyZkAiEzGOW8mxKok-NP3lOFt4_GQPJeRaRw7FVFktt9PiiaB-0cvhjXE3RNKocUFe0D2jH0NJmcKHzKzKr0Xi1_nJJtpfz_XSNu8H1QfmxaLWvlDFolQu-4DKRKRc8-Xt8Axt6QE0</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Bedos, Erik</creator><creator>Murphy, Gerard J</creator><creator>Tuset, Lars</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020101</creationdate><title>Amenability and coamenability of algebraic quantum groups</title><author>Bedos, Erik ; Murphy, Gerard J ; Tuset, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_283842623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedos, Erik</creatorcontrib><creatorcontrib>Murphy, Gerard J</creatorcontrib><creatorcontrib>Tuset, Lars</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedos, Erik</au><au>Murphy, Gerard J</au><au>Tuset, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amenability and coamenability of algebraic quantum groups</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>31</volume><issue>10</issue><spage>577</spage><epage>601</epage><pages>577-601</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obtained. Coamenability is shown to have interesting consequences for the modular theory in the case that the algebraic quantum group is of compact type.</abstract><doi>10.1155/S016117120210603</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0161-1712 |
ispartof | International journal of mathematics and mathematical sciences, 2002-01, Vol.31 (10), p.577-601 |
issn | 0161-1712 1687-0425 |
language | eng |
recordid | cdi_proquest_miscellaneous_28384262 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Amenability and coamenability of algebraic quantum groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amenability%20and%20coamenability%20of%20algebraic%20quantum%20groups&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Bedos,%20Erik&rft.date=2002-01-01&rft.volume=31&rft.issue=10&rft.spage=577&rft.epage=601&rft.pages=577-601&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/S016117120210603&rft_dat=%3Cproquest%3E28384262%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28384262&rft_id=info:pmid/&rfr_iscdi=true |