Amenability and coamenability of algebraic quantum groups

We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematics and mathematical sciences 2002-01, Vol.31 (10), p.577-601
Hauptverfasser: Bedos, Erik, Murphy, Gerard J, Tuset, Lars
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 10
container_start_page 577
container_title International journal of mathematics and mathematical sciences
container_volume 31
creator Bedos, Erik
Murphy, Gerard J
Tuset, Lars
description We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obtained. Coamenability is shown to have interesting consequences for the modular theory in the case that the algebraic quantum group is of compact type.
doi_str_mv 10.1155/S016117120210603
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28384262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28384262</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_283842623</originalsourceid><addsrcrecordid>eNqNij0PgjAUABujifixO3ZyQ_sKlDoao3HXnTywkJrSAqWD_96YODg6XXJ3hGyA7QCybH9jIABy4IwDEyyZkAiEzGOW8mxKok-NP3lOFt4_GQPJeRaRw7FVFktt9PiiaB-0cvhjXE3RNKocUFe0D2jH0NJmcKHzKzKr0Xi1_nJJtpfz_XSNu8H1QfmxaLWvlDFolQu-4DKRKRc8-Xt8Axt6QE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28384262</pqid></control><display><type>article</type><title>Amenability and coamenability of algebraic quantum groups</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bedos, Erik ; Murphy, Gerard J ; Tuset, Lars</creator><creatorcontrib>Bedos, Erik ; Murphy, Gerard J ; Tuset, Lars</creatorcontrib><description>We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obtained. Coamenability is shown to have interesting consequences for the modular theory in the case that the algebraic quantum group is of compact type.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/S016117120210603</identifier><language>eng</language><ispartof>International journal of mathematics and mathematical sciences, 2002-01, Vol.31 (10), p.577-601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Bedos, Erik</creatorcontrib><creatorcontrib>Murphy, Gerard J</creatorcontrib><creatorcontrib>Tuset, Lars</creatorcontrib><title>Amenability and coamenability of algebraic quantum groups</title><title>International journal of mathematics and mathematical sciences</title><description>We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obtained. Coamenability is shown to have interesting consequences for the modular theory in the case that the algebraic quantum group is of compact type.</description><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNij0PgjAUABujifixO3ZyQ_sKlDoao3HXnTywkJrSAqWD_96YODg6XXJ3hGyA7QCybH9jIABy4IwDEyyZkAiEzGOW8mxKok-NP3lOFt4_GQPJeRaRw7FVFktt9PiiaB-0cvhjXE3RNKocUFe0D2jH0NJmcKHzKzKr0Xi1_nJJtpfz_XSNu8H1QfmxaLWvlDFolQu-4DKRKRc8-Xt8Axt6QE0</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Bedos, Erik</creator><creator>Murphy, Gerard J</creator><creator>Tuset, Lars</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020101</creationdate><title>Amenability and coamenability of algebraic quantum groups</title><author>Bedos, Erik ; Murphy, Gerard J ; Tuset, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_283842623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedos, Erik</creatorcontrib><creatorcontrib>Murphy, Gerard J</creatorcontrib><creatorcontrib>Tuset, Lars</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedos, Erik</au><au>Murphy, Gerard J</au><au>Tuset, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amenability and coamenability of algebraic quantum groups</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>31</volume><issue>10</issue><spage>577</spage><epage>601</epage><pages>577-601</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>We define concepts of amenability and coamenability for algebraic quantum groups in the sense of Van Daele (1998). We show that coamenability of an algebraic quantum group always implies amenability of its dual. Various necessary and/or sufficient conditions for amenability or coamenability are obtained. Coamenability is shown to have interesting consequences for the modular theory in the case that the algebraic quantum group is of compact type.</abstract><doi>10.1155/S016117120210603</doi></addata></record>
fulltext fulltext
identifier ISSN: 0161-1712
ispartof International journal of mathematics and mathematical sciences, 2002-01, Vol.31 (10), p.577-601
issn 0161-1712
1687-0425
language eng
recordid cdi_proquest_miscellaneous_28384262
source DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Amenability and coamenability of algebraic quantum groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amenability%20and%20coamenability%20of%20algebraic%20quantum%20groups&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Bedos,%20Erik&rft.date=2002-01-01&rft.volume=31&rft.issue=10&rft.spage=577&rft.epage=601&rft.pages=577-601&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/S016117120210603&rft_dat=%3Cproquest%3E28384262%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28384262&rft_id=info:pmid/&rfr_iscdi=true