Multiway merging in parallel
The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 1996-01, Vol.7 (1), p.11-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 7 |
creator | WEN, Z |
description | The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This algorithm achieves O(log n) time using p=n log k/log n processors. Most of the previous log n research for this problem has been focused on the case when k=2. Very recently, parallel solutions for the case when k=2 have been reported. Our solution is the first logarithmic time optimal parallel algorithm for the problem when k/spl ges/2. It can also be seen as a unified optimal parallel algorithm for sorting and merging. In order to support the algorithm, a new processor assignment strategy is also presented. |
doi_str_mv | 10.1109/71.481593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28384240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>481593</ieee_id><sourcerecordid>28384240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-3675675789c8311273a615ee71af13464c3c185ea07143c124d04d1f94639ef03</originalsourceid><addsrcrecordid>eNo9j01LAzEQhoMoWKsHr-KhBxE8bM3kY5McpfgFFS96DiGdlEi6W5Mt0n_vLlsKA_PCPPPAS8g10DkANY8K5kKDNPyETEBKXTHQ_LTPVMjKMDDn5KKUH0pBSCom5PZjl7r45_azDeZ1bNaz2My2LruUMF2Ss-BSwavDnpLvl-evxVu1_Hx9XzwtK89p3VW8VrIfpY3XHIAp7mqQiApcAC5q4bkHLdFRBaKPTKyoWEEwouYGA-VTcj96t7n93WHp7CYWjym5BttdsUxzLZgYwIcR9LktJWOw2xw3Lu8tUDv0twrs2L9n7w5SV7xLIbvGx3J8YEYbrQbsZsQiIh6vB8c_KCBefA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28384240</pqid></control><display><type>article</type><title>Multiway merging in parallel</title><source>IEEE Xplore</source><creator>WEN, Z</creator><creatorcontrib>WEN, Z</creatorcontrib><description>The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This algorithm achieves O(log n) time using p=n log k/log n processors. Most of the previous log n research for this problem has been focused on the case when k=2. Very recently, parallel solutions for the case when k=2 have been reported. Our solution is the first logarithmic time optimal parallel algorithm for the problem when k/spl ges/2. It can also be seen as a unified optimal parallel algorithm for sorting and merging. In order to support the algorithm, a new processor assignment strategy is also presented.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/71.481593</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer Society ; Concurrent computing ; Database systems ; Exact sciences and technology ; Hardware ; Information retrieval ; Information retrieval. Graph ; Information systems. Data bases ; Memory organisation. Data processing ; Merging ; Parallel algorithms ; Software ; Sorting ; Theoretical computing</subject><ispartof>IEEE transactions on parallel and distributed systems, 1996-01, Vol.7 (1), p.11-17</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-3675675789c8311273a615ee71af13464c3c185ea07143c124d04d1f94639ef03</citedby><cites>FETCH-LOGICAL-c306t-3675675789c8311273a615ee71af13464c3c185ea07143c124d04d1f94639ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/481593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/481593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2989873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WEN, Z</creatorcontrib><title>Multiway merging in parallel</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This algorithm achieves O(log n) time using p=n log k/log n processors. Most of the previous log n research for this problem has been focused on the case when k=2. Very recently, parallel solutions for the case when k=2 have been reported. Our solution is the first logarithmic time optimal parallel algorithm for the problem when k/spl ges/2. It can also be seen as a unified optimal parallel algorithm for sorting and merging. In order to support the algorithm, a new processor assignment strategy is also presented.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer Society</subject><subject>Concurrent computing</subject><subject>Database systems</subject><subject>Exact sciences and technology</subject><subject>Hardware</subject><subject>Information retrieval</subject><subject>Information retrieval. Graph</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Merging</subject><subject>Parallel algorithms</subject><subject>Software</subject><subject>Sorting</subject><subject>Theoretical computing</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEQhoMoWKsHr-KhBxE8bM3kY5McpfgFFS96DiGdlEi6W5Mt0n_vLlsKA_PCPPPAS8g10DkANY8K5kKDNPyETEBKXTHQ_LTPVMjKMDDn5KKUH0pBSCom5PZjl7r45_azDeZ1bNaz2My2LruUMF2Ss-BSwavDnpLvl-evxVu1_Hx9XzwtK89p3VW8VrIfpY3XHIAp7mqQiApcAC5q4bkHLdFRBaKPTKyoWEEwouYGA-VTcj96t7n93WHp7CYWjym5BttdsUxzLZgYwIcR9LktJWOw2xw3Lu8tUDv0twrs2L9n7w5SV7xLIbvGx3J8YEYbrQbsZsQiIh6vB8c_KCBefA</recordid><startdate>199601</startdate><enddate>199601</enddate><creator>WEN, Z</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199601</creationdate><title>Multiway merging in parallel</title><author>WEN, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-3675675789c8311273a615ee71af13464c3c185ea07143c124d04d1f94639ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer Society</topic><topic>Concurrent computing</topic><topic>Database systems</topic><topic>Exact sciences and technology</topic><topic>Hardware</topic><topic>Information retrieval</topic><topic>Information retrieval. Graph</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Merging</topic><topic>Parallel algorithms</topic><topic>Software</topic><topic>Sorting</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WEN, Z</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEN, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiway merging in parallel</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>1996-01</date><risdate>1996</risdate><volume>7</volume><issue>1</issue><spage>11</spage><epage>17</epage><pages>11-17</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This algorithm achieves O(log n) time using p=n log k/log n processors. Most of the previous log n research for this problem has been focused on the case when k=2. Very recently, parallel solutions for the case when k=2 have been reported. Our solution is the first logarithmic time optimal parallel algorithm for the problem when k/spl ges/2. It can also be seen as a unified optimal parallel algorithm for sorting and merging. In order to support the algorithm, a new processor assignment strategy is also presented.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/71.481593</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 1996-01, Vol.7 (1), p.11-17 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_proquest_miscellaneous_28384240 |
source | IEEE Xplore |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Computer Society Concurrent computing Database systems Exact sciences and technology Hardware Information retrieval Information retrieval. Graph Information systems. Data bases Memory organisation. Data processing Merging Parallel algorithms Software Sorting Theoretical computing |
title | Multiway merging in parallel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiway%20merging%20in%20parallel&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=WEN,%20Z&rft.date=1996-01&rft.volume=7&rft.issue=1&rft.spage=11&rft.epage=17&rft.pages=11-17&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/71.481593&rft_dat=%3Cproquest_RIE%3E28384240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28384240&rft_id=info:pmid/&rft_ieee_id=481593&rfr_iscdi=true |