Multiway merging in parallel

The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 1996-01, Vol.7 (1), p.11-17
1. Verfasser: WEN, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 11
container_title IEEE transactions on parallel and distributed systems
container_volume 7
creator WEN, Z
description The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This algorithm achieves O(log n) time using p=n log k/log n processors. Most of the previous log n research for this problem has been focused on the case when k=2. Very recently, parallel solutions for the case when k=2 have been reported. Our solution is the first logarithmic time optimal parallel algorithm for the problem when k/spl ges/2. It can also be seen as a unified optimal parallel algorithm for sorting and merging. In order to support the algorithm, a new processor assignment strategy is also presented.
doi_str_mv 10.1109/71.481593
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28384240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>481593</ieee_id><sourcerecordid>28384240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-3675675789c8311273a615ee71af13464c3c185ea07143c124d04d1f94639ef03</originalsourceid><addsrcrecordid>eNo9j01LAzEQhoMoWKsHr-KhBxE8bM3kY5McpfgFFS96DiGdlEi6W5Mt0n_vLlsKA_PCPPPAS8g10DkANY8K5kKDNPyETEBKXTHQ_LTPVMjKMDDn5KKUH0pBSCom5PZjl7r45_azDeZ1bNaz2My2LruUMF2Ss-BSwavDnpLvl-evxVu1_Hx9XzwtK89p3VW8VrIfpY3XHIAp7mqQiApcAC5q4bkHLdFRBaKPTKyoWEEwouYGA-VTcj96t7n93WHp7CYWjym5BttdsUxzLZgYwIcR9LktJWOw2xw3Lu8tUDv0twrs2L9n7w5SV7xLIbvGx3J8YEYbrQbsZsQiIh6vB8c_KCBefA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28384240</pqid></control><display><type>article</type><title>Multiway merging in parallel</title><source>IEEE Xplore</source><creator>WEN, Z</creator><creatorcontrib>WEN, Z</creatorcontrib><description>The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This algorithm achieves O(log n) time using p=n log k/log n processors. Most of the previous log n research for this problem has been focused on the case when k=2. Very recently, parallel solutions for the case when k=2 have been reported. Our solution is the first logarithmic time optimal parallel algorithm for the problem when k/spl ges/2. It can also be seen as a unified optimal parallel algorithm for sorting and merging. In order to support the algorithm, a new processor assignment strategy is also presented.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/71.481593</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer Society ; Concurrent computing ; Database systems ; Exact sciences and technology ; Hardware ; Information retrieval ; Information retrieval. Graph ; Information systems. Data bases ; Memory organisation. Data processing ; Merging ; Parallel algorithms ; Software ; Sorting ; Theoretical computing</subject><ispartof>IEEE transactions on parallel and distributed systems, 1996-01, Vol.7 (1), p.11-17</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-3675675789c8311273a615ee71af13464c3c185ea07143c124d04d1f94639ef03</citedby><cites>FETCH-LOGICAL-c306t-3675675789c8311273a615ee71af13464c3c185ea07143c124d04d1f94639ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/481593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/481593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2989873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WEN, Z</creatorcontrib><title>Multiway merging in parallel</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This algorithm achieves O(log n) time using p=n log k/log n processors. Most of the previous log n research for this problem has been focused on the case when k=2. Very recently, parallel solutions for the case when k=2 have been reported. Our solution is the first logarithmic time optimal parallel algorithm for the problem when k/spl ges/2. It can also be seen as a unified optimal parallel algorithm for sorting and merging. In order to support the algorithm, a new processor assignment strategy is also presented.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer Society</subject><subject>Concurrent computing</subject><subject>Database systems</subject><subject>Exact sciences and technology</subject><subject>Hardware</subject><subject>Information retrieval</subject><subject>Information retrieval. Graph</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Merging</subject><subject>Parallel algorithms</subject><subject>Software</subject><subject>Sorting</subject><subject>Theoretical computing</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEQhoMoWKsHr-KhBxE8bM3kY5McpfgFFS96DiGdlEi6W5Mt0n_vLlsKA_PCPPPAS8g10DkANY8K5kKDNPyETEBKXTHQ_LTPVMjKMDDn5KKUH0pBSCom5PZjl7r45_azDeZ1bNaz2My2LruUMF2Ss-BSwavDnpLvl-evxVu1_Hx9XzwtK89p3VW8VrIfpY3XHIAp7mqQiApcAC5q4bkHLdFRBaKPTKyoWEEwouYGA-VTcj96t7n93WHp7CYWjym5BttdsUxzLZgYwIcR9LktJWOw2xw3Lu8tUDv0twrs2L9n7w5SV7xLIbvGx3J8YEYbrQbsZsQiIh6vB8c_KCBefA</recordid><startdate>199601</startdate><enddate>199601</enddate><creator>WEN, Z</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199601</creationdate><title>Multiway merging in parallel</title><author>WEN, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-3675675789c8311273a615ee71af13464c3c185ea07143c124d04d1f94639ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer Society</topic><topic>Concurrent computing</topic><topic>Database systems</topic><topic>Exact sciences and technology</topic><topic>Hardware</topic><topic>Information retrieval</topic><topic>Information retrieval. Graph</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Merging</topic><topic>Parallel algorithms</topic><topic>Software</topic><topic>Sorting</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WEN, Z</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEN, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiway merging in parallel</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>1996-01</date><risdate>1996</risdate><volume>7</volume><issue>1</issue><spage>11</spage><epage>17</epage><pages>11-17</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>The problem of merging k (k/spl ges/2) sorted lists is considered. We give an optimal parallel algorithm which takes O((n log k/p)+log n) time using p processors on a parallel random access machine that allows concurrent reads and exclusive writes, where n is the total size of the input lists. This algorithm achieves O(log n) time using p=n log k/log n processors. Most of the previous log n research for this problem has been focused on the case when k=2. Very recently, parallel solutions for the case when k=2 have been reported. Our solution is the first logarithmic time optimal parallel algorithm for the problem when k/spl ges/2. It can also be seen as a unified optimal parallel algorithm for sorting and merging. In order to support the algorithm, a new processor assignment strategy is also presented.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/71.481593</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 1996-01, Vol.7 (1), p.11-17
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_miscellaneous_28384240
source IEEE Xplore
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Computer Society
Concurrent computing
Database systems
Exact sciences and technology
Hardware
Information retrieval
Information retrieval. Graph
Information systems. Data bases
Memory organisation. Data processing
Merging
Parallel algorithms
Software
Sorting
Theoretical computing
title Multiway merging in parallel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiway%20merging%20in%20parallel&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=WEN,%20Z&rft.date=1996-01&rft.volume=7&rft.issue=1&rft.spage=11&rft.epage=17&rft.pages=11-17&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/71.481593&rft_dat=%3Cproquest_RIE%3E28384240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28384240&rft_id=info:pmid/&rft_ieee_id=481593&rfr_iscdi=true