Some aspects of adaptive grid technology related to boundary and interior layers
We consider the use of adaptive mesh strategies for solution of problems exhibiting boundary and interior layer solutions. As the presence of these layer structures suggests, reliable and accurate solution of this class of problems using finite difference, finite volume or finite element schemes req...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2004-04, Vol.166 (1), p.55-86 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Journal of computational and applied mathematics |
container_volume | 166 |
creator | Carey, Graham F. Anderson, M. Carnes, B. Kirk, B. |
description | We consider the use of adaptive mesh strategies for solution of problems exhibiting boundary and interior layer solutions. As the presence of these layer structures suggests, reliable and accurate solution of this class of problems using finite difference, finite volume or finite element schemes requires grading the mesh into the layers and due attention to the associated algorithms. When the nature and structure of the layer is known, mesh grading can be achieved during the grid generation by specifying an appropriate grading function. However, in many applications the location and nature of the layer behavior is not known in advance. Consequently, adaptive mesh techniques that employ feedback from intermediate grid solutions are an appealing approach. In this paper, we provide a brief overview of the main adaptive grid strategies in the context of problems with layers. Associated error indicators that guide the refinement feedback control/grid optimization process are also covered and there is a brief commentary on the supporting data structure requirements. Some current issues concerning the use of stabilization in conjunction with adaptive mesh refinement (AMR), the question of “pollution effects” in computation of local error indicators, the influence of nonlinearities and the design of meshes for targeted optimization of specific quantities are considered. The application of AMR for layer problems is illustrated by means of case studies from semiconductor device transport (drift diffusion), nonlinear reaction–diffusion, layers due to surface capillary effects, and shockwaves in compressible gas dynamics. |
doi_str_mv | 10.1016/j.cam.2003.09.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28378885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042703008689</els_id><sourcerecordid>28378885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-19e2d9d25e3ba184d403f31d50c1fefbb0c00880dd4c01e58f40713e63738e2b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF4ewF02ums9adomwZUM3kBQUNchTU41Q6cZk87AvL0ZRnDn6sDh-8_lI-SCQcmAtdeL0pplWQHwElQJvD0gMyaFKpgQ8pDMgAtRQF2JY3KS0gIAWsXqGXl9C0ukJq3QTomGnhpnVpPfIP2M3tEJ7dcYhvC5pREHM2FuBdqF9ehM3FIzOurHCaMPkQ5mizGdkaPeDAnPf-sp-bi_e58_Fs8vD0_z2-fCcqWmgimsnHJVg7wzTNauBt5z5hqwrMe-68ACSAnO1RYYNrKvQTCOLRdcYtXxU3K1n7uK4XuNadJLnywOgxkxrJOuJBdSyiaDbA_aGFKK2OtV9Mt8vWagd-70Qmd3eudOg9LZXc5c_g43yZqhj2a0Pv0FG6kEhzpzN3sO86cbj1En63G06HzMQrUL_p8tP-WuhG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28378885</pqid></control><display><type>article</type><title>Some aspects of adaptive grid technology related to boundary and interior layers</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Carey, Graham F. ; Anderson, M. ; Carnes, B. ; Kirk, B.</creator><creatorcontrib>Carey, Graham F. ; Anderson, M. ; Carnes, B. ; Kirk, B.</creatorcontrib><description>We consider the use of adaptive mesh strategies for solution of problems exhibiting boundary and interior layer solutions. As the presence of these layer structures suggests, reliable and accurate solution of this class of problems using finite difference, finite volume or finite element schemes requires grading the mesh into the layers and due attention to the associated algorithms. When the nature and structure of the layer is known, mesh grading can be achieved during the grid generation by specifying an appropriate grading function. However, in many applications the location and nature of the layer behavior is not known in advance. Consequently, adaptive mesh techniques that employ feedback from intermediate grid solutions are an appealing approach. In this paper, we provide a brief overview of the main adaptive grid strategies in the context of problems with layers. Associated error indicators that guide the refinement feedback control/grid optimization process are also covered and there is a brief commentary on the supporting data structure requirements. Some current issues concerning the use of stabilization in conjunction with adaptive mesh refinement (AMR), the question of “pollution effects” in computation of local error indicators, the influence of nonlinearities and the design of meshes for targeted optimization of specific quantities are considered. The application of AMR for layer problems is illustrated by means of case studies from semiconductor device transport (drift diffusion), nonlinear reaction–diffusion, layers due to surface capillary effects, and shockwaves in compressible gas dynamics.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2003.09.036</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive mesh refinement ; Boundary layers ; Calculus of variations and optimal control ; Exact sciences and technology ; Internal layers ; Mathematical analysis ; Mathematics ; Multiscale behavior ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2004-04, Vol.166 (1), p.55-86</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-19e2d9d25e3ba184d403f31d50c1fefbb0c00880dd4c01e58f40713e63738e2b3</citedby><cites>FETCH-LOGICAL-c399t-19e2d9d25e3ba184d403f31d50c1fefbb0c00880dd4c01e58f40713e63738e2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042703008689$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15897304$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carey, Graham F.</creatorcontrib><creatorcontrib>Anderson, M.</creatorcontrib><creatorcontrib>Carnes, B.</creatorcontrib><creatorcontrib>Kirk, B.</creatorcontrib><title>Some aspects of adaptive grid technology related to boundary and interior layers</title><title>Journal of computational and applied mathematics</title><description>We consider the use of adaptive mesh strategies for solution of problems exhibiting boundary and interior layer solutions. As the presence of these layer structures suggests, reliable and accurate solution of this class of problems using finite difference, finite volume or finite element schemes requires grading the mesh into the layers and due attention to the associated algorithms. When the nature and structure of the layer is known, mesh grading can be achieved during the grid generation by specifying an appropriate grading function. However, in many applications the location and nature of the layer behavior is not known in advance. Consequently, adaptive mesh techniques that employ feedback from intermediate grid solutions are an appealing approach. In this paper, we provide a brief overview of the main adaptive grid strategies in the context of problems with layers. Associated error indicators that guide the refinement feedback control/grid optimization process are also covered and there is a brief commentary on the supporting data structure requirements. Some current issues concerning the use of stabilization in conjunction with adaptive mesh refinement (AMR), the question of “pollution effects” in computation of local error indicators, the influence of nonlinearities and the design of meshes for targeted optimization of specific quantities are considered. The application of AMR for layer problems is illustrated by means of case studies from semiconductor device transport (drift diffusion), nonlinear reaction–diffusion, layers due to surface capillary effects, and shockwaves in compressible gas dynamics.</description><subject>Adaptive mesh refinement</subject><subject>Boundary layers</subject><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>Internal layers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multiscale behavior</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF4ewF02ums9adomwZUM3kBQUNchTU41Q6cZk87AvL0ZRnDn6sDh-8_lI-SCQcmAtdeL0pplWQHwElQJvD0gMyaFKpgQ8pDMgAtRQF2JY3KS0gIAWsXqGXl9C0ukJq3QTomGnhpnVpPfIP2M3tEJ7dcYhvC5pREHM2FuBdqF9ehM3FIzOurHCaMPkQ5mizGdkaPeDAnPf-sp-bi_e58_Fs8vD0_z2-fCcqWmgimsnHJVg7wzTNauBt5z5hqwrMe-68ACSAnO1RYYNrKvQTCOLRdcYtXxU3K1n7uK4XuNadJLnywOgxkxrJOuJBdSyiaDbA_aGFKK2OtV9Mt8vWagd-70Qmd3eudOg9LZXc5c_g43yZqhj2a0Pv0FG6kEhzpzN3sO86cbj1En63G06HzMQrUL_p8tP-WuhG0</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Carey, Graham F.</creator><creator>Anderson, M.</creator><creator>Carnes, B.</creator><creator>Kirk, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040401</creationdate><title>Some aspects of adaptive grid technology related to boundary and interior layers</title><author>Carey, Graham F. ; Anderson, M. ; Carnes, B. ; Kirk, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-19e2d9d25e3ba184d403f31d50c1fefbb0c00880dd4c01e58f40713e63738e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptive mesh refinement</topic><topic>Boundary layers</topic><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>Internal layers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multiscale behavior</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carey, Graham F.</creatorcontrib><creatorcontrib>Anderson, M.</creatorcontrib><creatorcontrib>Carnes, B.</creatorcontrib><creatorcontrib>Kirk, B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carey, Graham F.</au><au>Anderson, M.</au><au>Carnes, B.</au><au>Kirk, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some aspects of adaptive grid technology related to boundary and interior layers</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>166</volume><issue>1</issue><spage>55</spage><epage>86</epage><pages>55-86</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>We consider the use of adaptive mesh strategies for solution of problems exhibiting boundary and interior layer solutions. As the presence of these layer structures suggests, reliable and accurate solution of this class of problems using finite difference, finite volume or finite element schemes requires grading the mesh into the layers and due attention to the associated algorithms. When the nature and structure of the layer is known, mesh grading can be achieved during the grid generation by specifying an appropriate grading function. However, in many applications the location and nature of the layer behavior is not known in advance. Consequently, adaptive mesh techniques that employ feedback from intermediate grid solutions are an appealing approach. In this paper, we provide a brief overview of the main adaptive grid strategies in the context of problems with layers. Associated error indicators that guide the refinement feedback control/grid optimization process are also covered and there is a brief commentary on the supporting data structure requirements. Some current issues concerning the use of stabilization in conjunction with adaptive mesh refinement (AMR), the question of “pollution effects” in computation of local error indicators, the influence of nonlinearities and the design of meshes for targeted optimization of specific quantities are considered. The application of AMR for layer problems is illustrated by means of case studies from semiconductor device transport (drift diffusion), nonlinear reaction–diffusion, layers due to surface capillary effects, and shockwaves in compressible gas dynamics.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2003.09.036</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2004-04, Vol.166 (1), p.55-86 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_28378885 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive mesh refinement Boundary layers Calculus of variations and optimal control Exact sciences and technology Internal layers Mathematical analysis Mathematics Multiscale behavior Numerical analysis Numerical analysis. Scientific computation Partial differential equations, boundary value problems Sciences and techniques of general use |
title | Some aspects of adaptive grid technology related to boundary and interior layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20aspects%20of%20adaptive%20grid%20technology%20related%20to%20boundary%20and%20interior%20layers&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Carey,%20Graham%20F.&rft.date=2004-04-01&rft.volume=166&rft.issue=1&rft.spage=55&rft.epage=86&rft.pages=55-86&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2003.09.036&rft_dat=%3Cproquest_cross%3E28378885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28378885&rft_id=info:pmid/&rft_els_id=S0377042703008689&rfr_iscdi=true |