Structure-phase transformation of high speed steel by various high intensity ion-plasma treatments
The influence of compressive plasma flow (CPF) treatment on structure and mechanical properties of AISI M2 steel was investigated and was compared with the influences of other known high intensive techniques such as high current ion implantation (HCII) and plasma immersion ion implantation (PIII) of...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2004-03, Vol.180, p.108-112 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 108 |
container_title | Surface & coatings technology |
container_volume | 180 |
creator | Uglov, V.V. Anishchik, V.M. Astashynski, V.V. Stalmoshenok, E.K. Rusalsky, D.P. Cherenda, N.N. Rumyanceva, I.N. Askerko, V.V. Kuz'mitski, A.M. |
description | The influence of compressive plasma flow (CPF) treatment on structure and mechanical properties of AISI M2 steel was investigated and was compared with the influences of other known high intensive techniques such as high current ion implantation (HCII) and plasma immersion ion implantation (PIII) of nitrogen. The formation of structure-phase state of steel during HCII takes place under more equilibrium condition than during PIII and CPF treatments. So the structure of steel forming during HCII is more stable and is a superposition of martensite, hardening carbides, carbonitrides and small quantity of austenite. The condition of CPF treatment process is essentially more unequilibrium. It is similar to PIII but is more intensive. So the structure of thick (approx. 30 μm) surface layer of steel undergoes great changes—decay of main hardening M
6C carbide and formation of expanded austenite doped by nitrogen and alloying elements of steel. The presence of this austenite improves wear resistance of steel while the decay of hardening carbides leads to microhardness decrease. |
doi_str_mv | 10.1016/j.surfcoat.2003.10.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28378056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897203011654</els_id><sourcerecordid>28378056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-e6fb38c01e7a7aa40d4bdc11aba771a6fb6777e826fd9b6aff2dd39e25cb896e3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF1BO3BLsOI2TG6jiJVXiAJytjbOmrvLC6yD13-OqcOa00uzMaPdj7FrwTHBR3u4ymr01I4Qs51xGMeN5fcIWolJ1KmWhTtmC5yuVVrXKz9kF0Y5zLlRdLFjzFvxswuwxnbZAmAQPA9nR9xDcOCSjTbbuc5vQhNgmFBC7pNkn3-DdONNx54aAA7mwT2IinTqgHmIPQuhxCHTJzix0hFe_c8k-Hh_e18_p5vXpZX2_SY0sZEixtI2sDBeoQAEUvC2a1ggBDSglIG5LpRRWeWnbuinB2rxtZY35yjRVXaJcsptj7-THrxkp6N6Rwa6DAeOtOq-kqviqjMbyaDR-JPJo9eRdD36vBdcHpHqn_5DqA9KDHpHG4N0xiPGNb4dek3E4GGydRxN0O7r_Kn4AVRWHLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28378056</pqid></control><display><type>article</type><title>Structure-phase transformation of high speed steel by various high intensity ion-plasma treatments</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Uglov, V.V. ; Anishchik, V.M. ; Astashynski, V.V. ; Stalmoshenok, E.K. ; Rusalsky, D.P. ; Cherenda, N.N. ; Rumyanceva, I.N. ; Askerko, V.V. ; Kuz'mitski, A.M.</creator><creatorcontrib>Uglov, V.V. ; Anishchik, V.M. ; Astashynski, V.V. ; Stalmoshenok, E.K. ; Rusalsky, D.P. ; Cherenda, N.N. ; Rumyanceva, I.N. ; Askerko, V.V. ; Kuz'mitski, A.M.</creatorcontrib><description>The influence of compressive plasma flow (CPF) treatment on structure and mechanical properties of AISI M2 steel was investigated and was compared with the influences of other known high intensive techniques such as high current ion implantation (HCII) and plasma immersion ion implantation (PIII) of nitrogen. The formation of structure-phase state of steel during HCII takes place under more equilibrium condition than during PIII and CPF treatments. So the structure of steel forming during HCII is more stable and is a superposition of martensite, hardening carbides, carbonitrides and small quantity of austenite. The condition of CPF treatment process is essentially more unequilibrium. It is similar to PIII but is more intensive. So the structure of thick (approx. 30 μm) surface layer of steel undergoes great changes—decay of main hardening M
6C carbide and formation of expanded austenite doped by nitrogen and alloying elements of steel. The presence of this austenite improves wear resistance of steel while the decay of hardening carbides leads to microhardness decrease.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2003.10.029</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Compressive plasma flow ; Mechanical properties ; Structure-phase transformation</subject><ispartof>Surface & coatings technology, 2004-03, Vol.180, p.108-112</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-e6fb38c01e7a7aa40d4bdc11aba771a6fb6777e826fd9b6aff2dd39e25cb896e3</citedby><cites>FETCH-LOGICAL-c343t-e6fb38c01e7a7aa40d4bdc11aba771a6fb6777e826fd9b6aff2dd39e25cb896e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897203011654$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Uglov, V.V.</creatorcontrib><creatorcontrib>Anishchik, V.M.</creatorcontrib><creatorcontrib>Astashynski, V.V.</creatorcontrib><creatorcontrib>Stalmoshenok, E.K.</creatorcontrib><creatorcontrib>Rusalsky, D.P.</creatorcontrib><creatorcontrib>Cherenda, N.N.</creatorcontrib><creatorcontrib>Rumyanceva, I.N.</creatorcontrib><creatorcontrib>Askerko, V.V.</creatorcontrib><creatorcontrib>Kuz'mitski, A.M.</creatorcontrib><title>Structure-phase transformation of high speed steel by various high intensity ion-plasma treatments</title><title>Surface & coatings technology</title><description>The influence of compressive plasma flow (CPF) treatment on structure and mechanical properties of AISI M2 steel was investigated and was compared with the influences of other known high intensive techniques such as high current ion implantation (HCII) and plasma immersion ion implantation (PIII) of nitrogen. The formation of structure-phase state of steel during HCII takes place under more equilibrium condition than during PIII and CPF treatments. So the structure of steel forming during HCII is more stable and is a superposition of martensite, hardening carbides, carbonitrides and small quantity of austenite. The condition of CPF treatment process is essentially more unequilibrium. It is similar to PIII but is more intensive. So the structure of thick (approx. 30 μm) surface layer of steel undergoes great changes—decay of main hardening M
6C carbide and formation of expanded austenite doped by nitrogen and alloying elements of steel. The presence of this austenite improves wear resistance of steel while the decay of hardening carbides leads to microhardness decrease.</description><subject>Compressive plasma flow</subject><subject>Mechanical properties</subject><subject>Structure-phase transformation</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF1BO3BLsOI2TG6jiJVXiAJytjbOmrvLC6yD13-OqcOa00uzMaPdj7FrwTHBR3u4ymr01I4Qs51xGMeN5fcIWolJ1KmWhTtmC5yuVVrXKz9kF0Y5zLlRdLFjzFvxswuwxnbZAmAQPA9nR9xDcOCSjTbbuc5vQhNgmFBC7pNkn3-DdONNx54aAA7mwT2IinTqgHmIPQuhxCHTJzix0hFe_c8k-Hh_e18_p5vXpZX2_SY0sZEixtI2sDBeoQAEUvC2a1ggBDSglIG5LpRRWeWnbuinB2rxtZY35yjRVXaJcsptj7-THrxkp6N6Rwa6DAeOtOq-kqviqjMbyaDR-JPJo9eRdD36vBdcHpHqn_5DqA9KDHpHG4N0xiPGNb4dek3E4GGydRxN0O7r_Kn4AVRWHLQ</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Uglov, V.V.</creator><creator>Anishchik, V.M.</creator><creator>Astashynski, V.V.</creator><creator>Stalmoshenok, E.K.</creator><creator>Rusalsky, D.P.</creator><creator>Cherenda, N.N.</creator><creator>Rumyanceva, I.N.</creator><creator>Askerko, V.V.</creator><creator>Kuz'mitski, A.M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20040301</creationdate><title>Structure-phase transformation of high speed steel by various high intensity ion-plasma treatments</title><author>Uglov, V.V. ; Anishchik, V.M. ; Astashynski, V.V. ; Stalmoshenok, E.K. ; Rusalsky, D.P. ; Cherenda, N.N. ; Rumyanceva, I.N. ; Askerko, V.V. ; Kuz'mitski, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-e6fb38c01e7a7aa40d4bdc11aba771a6fb6777e826fd9b6aff2dd39e25cb896e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Compressive plasma flow</topic><topic>Mechanical properties</topic><topic>Structure-phase transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uglov, V.V.</creatorcontrib><creatorcontrib>Anishchik, V.M.</creatorcontrib><creatorcontrib>Astashynski, V.V.</creatorcontrib><creatorcontrib>Stalmoshenok, E.K.</creatorcontrib><creatorcontrib>Rusalsky, D.P.</creatorcontrib><creatorcontrib>Cherenda, N.N.</creatorcontrib><creatorcontrib>Rumyanceva, I.N.</creatorcontrib><creatorcontrib>Askerko, V.V.</creatorcontrib><creatorcontrib>Kuz'mitski, A.M.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uglov, V.V.</au><au>Anishchik, V.M.</au><au>Astashynski, V.V.</au><au>Stalmoshenok, E.K.</au><au>Rusalsky, D.P.</au><au>Cherenda, N.N.</au><au>Rumyanceva, I.N.</au><au>Askerko, V.V.</au><au>Kuz'mitski, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-phase transformation of high speed steel by various high intensity ion-plasma treatments</atitle><jtitle>Surface & coatings technology</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>180</volume><spage>108</spage><epage>112</epage><pages>108-112</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The influence of compressive plasma flow (CPF) treatment on structure and mechanical properties of AISI M2 steel was investigated and was compared with the influences of other known high intensive techniques such as high current ion implantation (HCII) and plasma immersion ion implantation (PIII) of nitrogen. The formation of structure-phase state of steel during HCII takes place under more equilibrium condition than during PIII and CPF treatments. So the structure of steel forming during HCII is more stable and is a superposition of martensite, hardening carbides, carbonitrides and small quantity of austenite. The condition of CPF treatment process is essentially more unequilibrium. It is similar to PIII but is more intensive. So the structure of thick (approx. 30 μm) surface layer of steel undergoes great changes—decay of main hardening M
6C carbide and formation of expanded austenite doped by nitrogen and alloying elements of steel. The presence of this austenite improves wear resistance of steel while the decay of hardening carbides leads to microhardness decrease.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2003.10.029</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2004-03, Vol.180, p.108-112 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_28378056 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Compressive plasma flow Mechanical properties Structure-phase transformation |
title | Structure-phase transformation of high speed steel by various high intensity ion-plasma treatments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-phase%20transformation%20of%20high%20speed%20steel%20by%20various%20high%20intensity%20ion-plasma%20treatments&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Uglov,%20V.V.&rft.date=2004-03-01&rft.volume=180&rft.spage=108&rft.epage=112&rft.pages=108-112&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2003.10.029&rft_dat=%3Cproquest_cross%3E28378056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28378056&rft_id=info:pmid/&rft_els_id=S0257897203011654&rfr_iscdi=true |