Error trends in Quasi-Monte Carlo integration

Several test functions, whose variation could be calculated, were integrated with up to 10 10 trials using different low-discrepancy sequences in dimensions 3, 6, 12, and 24. The integration errors divided by the variation of the functions were compared with exact and asymptotic discrepancies. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2004-05, Vol.159 (2), p.93-105
1. Verfasser: Schlier, Ch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 2
container_start_page 93
container_title Computer physics communications
container_volume 159
creator Schlier, Ch
description Several test functions, whose variation could be calculated, were integrated with up to 10 10 trials using different low-discrepancy sequences in dimensions 3, 6, 12, and 24. The integration errors divided by the variation of the functions were compared with exact and asymptotic discrepancies. These errors follow an approximate power law, whose constant is essentially given by the variance of the integrand, and whose power depends on its effective dimension. Included were also some calculations with scrambled Niederreiter sequences, and with Niederreiter–Xing sequences. A notable result is that the pre-factors of the asymptotic discrepancy function D ∗(N) , which are so often used as a quality measure of the sequences, have little relevance in practical ranges of  N.
doi_str_mv 10.1016/j.cpc.2004.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28370521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465504000827</els_id><sourcerecordid>28370521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-11614242c5b5c9f20b3978c86a3d73b0b7b5942ecff1e97d01372632d62429b83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHdduUu9ebRpcCXD-IAREXQd2vRWMnSammQE_70ZxrWrA5fzHbgfIdcMSgasvt2WdrYlB5Al8DLHCVmwRmnKtZSnZAHAgMq6qs7JRYxbAFBKiwWh6xB8KFLAqY-Fm4q3fRsdffFTwmLVhtHnY8LP0Cbnp0tyNrRjxKu_XJKPh_X76oluXh-fV_cbagWvE2WsZpJLbquusnrg0AmtGtvUreiV6KBTXaUlRzsMDLXqgQnFa8H7OkO6a8SS3Bx35-C_9hiT2blocRzbCf0-Gt4IBRVnuciORRt8jAEHMwe3a8OPYWAOYszWZDHmIMYANzkyc3dkMH_w7TCYaB1OFnsX0CbTe_cP_Qux9WkW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28370521</pqid></control><display><type>article</type><title>Error trends in Quasi-Monte Carlo integration</title><source>Access via ScienceDirect (Elsevier)</source><creator>Schlier, Ch</creator><creatorcontrib>Schlier, Ch</creatorcontrib><description>Several test functions, whose variation could be calculated, were integrated with up to 10 10 trials using different low-discrepancy sequences in dimensions 3, 6, 12, and 24. The integration errors divided by the variation of the functions were compared with exact and asymptotic discrepancies. These errors follow an approximate power law, whose constant is essentially given by the variance of the integrand, and whose power depends on its effective dimension. Included were also some calculations with scrambled Niederreiter sequences, and with Niederreiter–Xing sequences. A notable result is that the pre-factors of the asymptotic discrepancy function D ∗(N) , which are so often used as a quality measure of the sequences, have little relevance in practical ranges of  N.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2004.02.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Low-discrepancy sequences ; Numerical integration ; Quasi-Monte Carlo methods</subject><ispartof>Computer physics communications, 2004-05, Vol.159 (2), p.93-105</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-11614242c5b5c9f20b3978c86a3d73b0b7b5942ecff1e97d01372632d62429b83</citedby><cites>FETCH-LOGICAL-c326t-11614242c5b5c9f20b3978c86a3d73b0b7b5942ecff1e97d01372632d62429b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2004.02.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Schlier, Ch</creatorcontrib><title>Error trends in Quasi-Monte Carlo integration</title><title>Computer physics communications</title><description>Several test functions, whose variation could be calculated, were integrated with up to 10 10 trials using different low-discrepancy sequences in dimensions 3, 6, 12, and 24. The integration errors divided by the variation of the functions were compared with exact and asymptotic discrepancies. These errors follow an approximate power law, whose constant is essentially given by the variance of the integrand, and whose power depends on its effective dimension. Included were also some calculations with scrambled Niederreiter sequences, and with Niederreiter–Xing sequences. A notable result is that the pre-factors of the asymptotic discrepancy function D ∗(N) , which are so often used as a quality measure of the sequences, have little relevance in practical ranges of  N.</description><subject>Low-discrepancy sequences</subject><subject>Numerical integration</subject><subject>Quasi-Monte Carlo methods</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHdduUu9ebRpcCXD-IAREXQd2vRWMnSammQE_70ZxrWrA5fzHbgfIdcMSgasvt2WdrYlB5Al8DLHCVmwRmnKtZSnZAHAgMq6qs7JRYxbAFBKiwWh6xB8KFLAqY-Fm4q3fRsdffFTwmLVhtHnY8LP0Cbnp0tyNrRjxKu_XJKPh_X76oluXh-fV_cbagWvE2WsZpJLbquusnrg0AmtGtvUreiV6KBTXaUlRzsMDLXqgQnFa8H7OkO6a8SS3Bx35-C_9hiT2blocRzbCf0-Gt4IBRVnuciORRt8jAEHMwe3a8OPYWAOYszWZDHmIMYANzkyc3dkMH_w7TCYaB1OFnsX0CbTe_cP_Qux9WkW</recordid><startdate>20040515</startdate><enddate>20040515</enddate><creator>Schlier, Ch</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040515</creationdate><title>Error trends in Quasi-Monte Carlo integration</title><author>Schlier, Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-11614242c5b5c9f20b3978c86a3d73b0b7b5942ecff1e97d01372632d62429b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Low-discrepancy sequences</topic><topic>Numerical integration</topic><topic>Quasi-Monte Carlo methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlier, Ch</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlier, Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error trends in Quasi-Monte Carlo integration</atitle><jtitle>Computer physics communications</jtitle><date>2004-05-15</date><risdate>2004</risdate><volume>159</volume><issue>2</issue><spage>93</spage><epage>105</epage><pages>93-105</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>Several test functions, whose variation could be calculated, were integrated with up to 10 10 trials using different low-discrepancy sequences in dimensions 3, 6, 12, and 24. The integration errors divided by the variation of the functions were compared with exact and asymptotic discrepancies. These errors follow an approximate power law, whose constant is essentially given by the variance of the integrand, and whose power depends on its effective dimension. Included were also some calculations with scrambled Niederreiter sequences, and with Niederreiter–Xing sequences. A notable result is that the pre-factors of the asymptotic discrepancy function D ∗(N) , which are so often used as a quality measure of the sequences, have little relevance in practical ranges of  N.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2004.02.004</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2004-05, Vol.159 (2), p.93-105
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_28370521
source Access via ScienceDirect (Elsevier)
subjects Low-discrepancy sequences
Numerical integration
Quasi-Monte Carlo methods
title Error trends in Quasi-Monte Carlo integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20trends%20in%20Quasi-Monte%20Carlo%20integration&rft.jtitle=Computer%20physics%20communications&rft.au=Schlier,%20Ch&rft.date=2004-05-15&rft.volume=159&rft.issue=2&rft.spage=93&rft.epage=105&rft.pages=93-105&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2004.02.004&rft_dat=%3Cproquest_cross%3E28370521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28370521&rft_id=info:pmid/&rft_els_id=S0010465504000827&rfr_iscdi=true