Aerogel-platform optical sensors for oxygen gas

We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2004-12, Vol.350 (Complete), p.326-335
Hauptverfasser: Plata, Desirée L., Briones, Yadira J., Wolfe, Rebecca L., Carroll, Mary K., Bakrania, Smitesh D., Mandel, Shira G., Anderson, Ann M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue Complete
container_start_page 326
container_title Journal of non-crystalline solids
container_volume 350
creator Plata, Desirée L.
Briones, Yadira J.
Wolfe, Rebecca L.
Carroll, Mary K.
Bakrania, Smitesh D.
Mandel, Shira G.
Anderson, Ann M.
description We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitates the entrapment of probe species within the aerogel matrix. The three probes used, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+], ruthenium(II)4,7-diphenyl-1,10-phenanthroline [Ru(dpp)32+], and platinum octaethylporphine [PtOEP], respond to variations in ambient oxygen concentrations through marked changes in their fluorescence intensity. The probe is added to a tetramethoxysilane (TMOS) precursor mixture before the mixture is poured into the mold; hence, the probe becomes physically entrapped within the aerogel matrix as it forms. We investigated the response of the probes to oxygen in xerogels and in aerogels. Both the aerogels and xerogels have high porosity, which allows for rapid diffusion of gases into these materials. The sensors respond rapidly and reversibly to changes in oxygen concentration. As oxygen concentration decreases, the Ru(dpp)32+ and PtOEP probe fluorescence intensities increase dramatically. The change in intensity of Ru(bpy)32+ is more modest. Ru(dpp)32+-doped aerogels and xerogels respond within 10s and 50s, respectively, whereas PtOEP-doped aerogels respond within 20s.
doi_str_mv 10.1016/j.jnoncrysol.2004.06.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28370017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002230930400821X</els_id><sourcerecordid>28370017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9bdeb7f142979f54abcbadab77a4777cc6a9c3e2da2182a7a27d19d8dab33d6a3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwH3KBW1I_0tg-loqXVIkLnK2N41SO0jh4U0T_Pa5aiSN7WWn1zY5mCMkYLRhl1aIruiEMNh4w9AWntCxoVdCyuiAzpqTIS8X4JZlRynkuqBbX5Aaxo2mkUDOyWLkYtq7Pxx6mNsRdFsbJW-gzdAOGiFk6ZuHnsHVDtgW8JVct9OjuzntOPp-fPtav-eb95W292uRWSD3lum5cLVtWci11uyyhtjU0UEsJpZTS2gq0FY43wJniIIHLhulGJUSIpgIxJw-nv2MMX3uHk9l5tK7vYXBhj4YrISllMoHqBNoYEKNrzRj9DuLBMGqODZnO_DVkjg0ZWpnUUJLenz0AU-I2wmA9_ukrUWqtlol7PHEuBf72Lhq03g3WNT46O5km-P_NfgFbyoK_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28370017</pqid></control><display><type>article</type><title>Aerogel-platform optical sensors for oxygen gas</title><source>Access via ScienceDirect (Elsevier)</source><creator>Plata, Desirée L. ; Briones, Yadira J. ; Wolfe, Rebecca L. ; Carroll, Mary K. ; Bakrania, Smitesh D. ; Mandel, Shira G. ; Anderson, Ann M.</creator><creatorcontrib>Plata, Desirée L. ; Briones, Yadira J. ; Wolfe, Rebecca L. ; Carroll, Mary K. ; Bakrania, Smitesh D. ; Mandel, Shira G. ; Anderson, Ann M.</creatorcontrib><description>We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitates the entrapment of probe species within the aerogel matrix. The three probes used, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+], ruthenium(II)4,7-diphenyl-1,10-phenanthroline [Ru(dpp)32+], and platinum octaethylporphine [PtOEP], respond to variations in ambient oxygen concentrations through marked changes in their fluorescence intensity. The probe is added to a tetramethoxysilane (TMOS) precursor mixture before the mixture is poured into the mold; hence, the probe becomes physically entrapped within the aerogel matrix as it forms. We investigated the response of the probes to oxygen in xerogels and in aerogels. Both the aerogels and xerogels have high porosity, which allows for rapid diffusion of gases into these materials. The sensors respond rapidly and reversibly to changes in oxygen concentration. As oxygen concentration decreases, the Ru(dpp)32+ and PtOEP probe fluorescence intensities increase dramatically. The change in intensity of Ru(bpy)32+ is more modest. Ru(dpp)32+-doped aerogels and xerogels respond within 10s and 50s, respectively, whereas PtOEP-doped aerogels respond within 20s.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2004.06.046</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Physics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><ispartof>Journal of non-crystalline solids, 2004-12, Vol.350 (Complete), p.326-335</ispartof><rights>2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9bdeb7f142979f54abcbadab77a4777cc6a9c3e2da2182a7a27d19d8dab33d6a3</citedby><cites>FETCH-LOGICAL-c379t-9bdeb7f142979f54abcbadab77a4777cc6a9c3e2da2182a7a27d19d8dab33d6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2004.06.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16349985$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Plata, Desirée L.</creatorcontrib><creatorcontrib>Briones, Yadira J.</creatorcontrib><creatorcontrib>Wolfe, Rebecca L.</creatorcontrib><creatorcontrib>Carroll, Mary K.</creatorcontrib><creatorcontrib>Bakrania, Smitesh D.</creatorcontrib><creatorcontrib>Mandel, Shira G.</creatorcontrib><creatorcontrib>Anderson, Ann M.</creatorcontrib><title>Aerogel-platform optical sensors for oxygen gas</title><title>Journal of non-crystalline solids</title><description>We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitates the entrapment of probe species within the aerogel matrix. The three probes used, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+], ruthenium(II)4,7-diphenyl-1,10-phenanthroline [Ru(dpp)32+], and platinum octaethylporphine [PtOEP], respond to variations in ambient oxygen concentrations through marked changes in their fluorescence intensity. The probe is added to a tetramethoxysilane (TMOS) precursor mixture before the mixture is poured into the mold; hence, the probe becomes physically entrapped within the aerogel matrix as it forms. We investigated the response of the probes to oxygen in xerogels and in aerogels. Both the aerogels and xerogels have high porosity, which allows for rapid diffusion of gases into these materials. The sensors respond rapidly and reversibly to changes in oxygen concentration. As oxygen concentration decreases, the Ru(dpp)32+ and PtOEP probe fluorescence intensities increase dramatically. The change in intensity of Ru(bpy)32+ is more modest. Ru(dpp)32+-doped aerogels and xerogels respond within 10s and 50s, respectively, whereas PtOEP-doped aerogels respond within 20s.</description><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Physics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwH3KBW1I_0tg-loqXVIkLnK2N41SO0jh4U0T_Pa5aiSN7WWn1zY5mCMkYLRhl1aIruiEMNh4w9AWntCxoVdCyuiAzpqTIS8X4JZlRynkuqBbX5Aaxo2mkUDOyWLkYtq7Pxx6mNsRdFsbJW-gzdAOGiFk6ZuHnsHVDtgW8JVct9OjuzntOPp-fPtav-eb95W292uRWSD3lum5cLVtWci11uyyhtjU0UEsJpZTS2gq0FY43wJniIIHLhulGJUSIpgIxJw-nv2MMX3uHk9l5tK7vYXBhj4YrISllMoHqBNoYEKNrzRj9DuLBMGqODZnO_DVkjg0ZWpnUUJLenz0AU-I2wmA9_ukrUWqtlol7PHEuBf72Lhq03g3WNT46O5km-P_NfgFbyoK_</recordid><startdate>20041215</startdate><enddate>20041215</enddate><creator>Plata, Desirée L.</creator><creator>Briones, Yadira J.</creator><creator>Wolfe, Rebecca L.</creator><creator>Carroll, Mary K.</creator><creator>Bakrania, Smitesh D.</creator><creator>Mandel, Shira G.</creator><creator>Anderson, Ann M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20041215</creationdate><title>Aerogel-platform optical sensors for oxygen gas</title><author>Plata, Desirée L. ; Briones, Yadira J. ; Wolfe, Rebecca L. ; Carroll, Mary K. ; Bakrania, Smitesh D. ; Mandel, Shira G. ; Anderson, Ann M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9bdeb7f142979f54abcbadab77a4777cc6a9c3e2da2182a7a27d19d8dab33d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Physics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plata, Desirée L.</creatorcontrib><creatorcontrib>Briones, Yadira J.</creatorcontrib><creatorcontrib>Wolfe, Rebecca L.</creatorcontrib><creatorcontrib>Carroll, Mary K.</creatorcontrib><creatorcontrib>Bakrania, Smitesh D.</creatorcontrib><creatorcontrib>Mandel, Shira G.</creatorcontrib><creatorcontrib>Anderson, Ann M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plata, Desirée L.</au><au>Briones, Yadira J.</au><au>Wolfe, Rebecca L.</au><au>Carroll, Mary K.</au><au>Bakrania, Smitesh D.</au><au>Mandel, Shira G.</au><au>Anderson, Ann M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerogel-platform optical sensors for oxygen gas</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2004-12-15</date><risdate>2004</risdate><volume>350</volume><issue>Complete</issue><spage>326</spage><epage>335</epage><pages>326-335</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitates the entrapment of probe species within the aerogel matrix. The three probes used, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+], ruthenium(II)4,7-diphenyl-1,10-phenanthroline [Ru(dpp)32+], and platinum octaethylporphine [PtOEP], respond to variations in ambient oxygen concentrations through marked changes in their fluorescence intensity. The probe is added to a tetramethoxysilane (TMOS) precursor mixture before the mixture is poured into the mold; hence, the probe becomes physically entrapped within the aerogel matrix as it forms. We investigated the response of the probes to oxygen in xerogels and in aerogels. Both the aerogels and xerogels have high porosity, which allows for rapid diffusion of gases into these materials. The sensors respond rapidly and reversibly to changes in oxygen concentration. As oxygen concentration decreases, the Ru(dpp)32+ and PtOEP probe fluorescence intensities increase dramatically. The change in intensity of Ru(bpy)32+ is more modest. Ru(dpp)32+-doped aerogels and xerogels respond within 10s and 50s, respectively, whereas PtOEP-doped aerogels respond within 20s.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2004.06.046</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2004-12, Vol.350 (Complete), p.326-335
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_28370017
source Access via ScienceDirect (Elsevier)
subjects Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Physics
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
title Aerogel-platform optical sensors for oxygen gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerogel-platform%20optical%20sensors%20for%20oxygen%20gas&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Plata,%20Desir%C3%A9e%20L.&rft.date=2004-12-15&rft.volume=350&rft.issue=Complete&rft.spage=326&rft.epage=335&rft.pages=326-335&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2004.06.046&rft_dat=%3Cproquest_cross%3E28370017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28370017&rft_id=info:pmid/&rft_els_id=S002230930400821X&rfr_iscdi=true