Aerogel-platform optical sensors for oxygen gas
We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitate...
Gespeichert in:
Veröffentlicht in: | Journal of non-crystalline solids 2004-12, Vol.350 (Complete), p.326-335 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | Complete |
container_start_page | 326 |
container_title | Journal of non-crystalline solids |
container_volume | 350 |
creator | Plata, Desirée L. Briones, Yadira J. Wolfe, Rebecca L. Carroll, Mary K. Bakrania, Smitesh D. Mandel, Shira G. Anderson, Ann M. |
description | We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitates the entrapment of probe species within the aerogel matrix. The three probes used, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+], ruthenium(II)4,7-diphenyl-1,10-phenanthroline [Ru(dpp)32+], and platinum octaethylporphine [PtOEP], respond to variations in ambient oxygen concentrations through marked changes in their fluorescence intensity. The probe is added to a tetramethoxysilane (TMOS) precursor mixture before the mixture is poured into the mold; hence, the probe becomes physically entrapped within the aerogel matrix as it forms. We investigated the response of the probes to oxygen in xerogels and in aerogels. Both the aerogels and xerogels have high porosity, which allows for rapid diffusion of gases into these materials. The sensors respond rapidly and reversibly to changes in oxygen concentration. As oxygen concentration decreases, the Ru(dpp)32+ and PtOEP probe fluorescence intensities increase dramatically. The change in intensity of Ru(bpy)32+ is more modest. Ru(dpp)32+-doped aerogels and xerogels respond within 10s and 50s, respectively, whereas PtOEP-doped aerogels respond within 20s. |
doi_str_mv | 10.1016/j.jnoncrysol.2004.06.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28370017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002230930400821X</els_id><sourcerecordid>28370017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9bdeb7f142979f54abcbadab77a4777cc6a9c3e2da2182a7a27d19d8dab33d6a3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwH3KBW1I_0tg-loqXVIkLnK2N41SO0jh4U0T_Pa5aiSN7WWn1zY5mCMkYLRhl1aIruiEMNh4w9AWntCxoVdCyuiAzpqTIS8X4JZlRynkuqBbX5Aaxo2mkUDOyWLkYtq7Pxx6mNsRdFsbJW-gzdAOGiFk6ZuHnsHVDtgW8JVct9OjuzntOPp-fPtav-eb95W292uRWSD3lum5cLVtWci11uyyhtjU0UEsJpZTS2gq0FY43wJniIIHLhulGJUSIpgIxJw-nv2MMX3uHk9l5tK7vYXBhj4YrISllMoHqBNoYEKNrzRj9DuLBMGqODZnO_DVkjg0ZWpnUUJLenz0AU-I2wmA9_ukrUWqtlol7PHEuBf72Lhq03g3WNT46O5km-P_NfgFbyoK_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28370017</pqid></control><display><type>article</type><title>Aerogel-platform optical sensors for oxygen gas</title><source>Access via ScienceDirect (Elsevier)</source><creator>Plata, Desirée L. ; Briones, Yadira J. ; Wolfe, Rebecca L. ; Carroll, Mary K. ; Bakrania, Smitesh D. ; Mandel, Shira G. ; Anderson, Ann M.</creator><creatorcontrib>Plata, Desirée L. ; Briones, Yadira J. ; Wolfe, Rebecca L. ; Carroll, Mary K. ; Bakrania, Smitesh D. ; Mandel, Shira G. ; Anderson, Ann M.</creatorcontrib><description>We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitates the entrapment of probe species within the aerogel matrix. The three probes used, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+], ruthenium(II)4,7-diphenyl-1,10-phenanthroline [Ru(dpp)32+], and platinum octaethylporphine [PtOEP], respond to variations in ambient oxygen concentrations through marked changes in their fluorescence intensity. The probe is added to a tetramethoxysilane (TMOS) precursor mixture before the mixture is poured into the mold; hence, the probe becomes physically entrapped within the aerogel matrix as it forms. We investigated the response of the probes to oxygen in xerogels and in aerogels. Both the aerogels and xerogels have high porosity, which allows for rapid diffusion of gases into these materials. The sensors respond rapidly and reversibly to changes in oxygen concentration. As oxygen concentration decreases, the Ru(dpp)32+ and PtOEP probe fluorescence intensities increase dramatically. The change in intensity of Ru(bpy)32+ is more modest. Ru(dpp)32+-doped aerogels and xerogels respond within 10s and 50s, respectively, whereas PtOEP-doped aerogels respond within 20s.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2004.06.046</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Physics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><ispartof>Journal of non-crystalline solids, 2004-12, Vol.350 (Complete), p.326-335</ispartof><rights>2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9bdeb7f142979f54abcbadab77a4777cc6a9c3e2da2182a7a27d19d8dab33d6a3</citedby><cites>FETCH-LOGICAL-c379t-9bdeb7f142979f54abcbadab77a4777cc6a9c3e2da2182a7a27d19d8dab33d6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2004.06.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16349985$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Plata, Desirée L.</creatorcontrib><creatorcontrib>Briones, Yadira J.</creatorcontrib><creatorcontrib>Wolfe, Rebecca L.</creatorcontrib><creatorcontrib>Carroll, Mary K.</creatorcontrib><creatorcontrib>Bakrania, Smitesh D.</creatorcontrib><creatorcontrib>Mandel, Shira G.</creatorcontrib><creatorcontrib>Anderson, Ann M.</creatorcontrib><title>Aerogel-platform optical sensors for oxygen gas</title><title>Journal of non-crystalline solids</title><description>We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitates the entrapment of probe species within the aerogel matrix. The three probes used, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+], ruthenium(II)4,7-diphenyl-1,10-phenanthroline [Ru(dpp)32+], and platinum octaethylporphine [PtOEP], respond to variations in ambient oxygen concentrations through marked changes in their fluorescence intensity. The probe is added to a tetramethoxysilane (TMOS) precursor mixture before the mixture is poured into the mold; hence, the probe becomes physically entrapped within the aerogel matrix as it forms. We investigated the response of the probes to oxygen in xerogels and in aerogels. Both the aerogels and xerogels have high porosity, which allows for rapid diffusion of gases into these materials. The sensors respond rapidly and reversibly to changes in oxygen concentration. As oxygen concentration decreases, the Ru(dpp)32+ and PtOEP probe fluorescence intensities increase dramatically. The change in intensity of Ru(bpy)32+ is more modest. Ru(dpp)32+-doped aerogels and xerogels respond within 10s and 50s, respectively, whereas PtOEP-doped aerogels respond within 20s.</description><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Physics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwH3KBW1I_0tg-loqXVIkLnK2N41SO0jh4U0T_Pa5aiSN7WWn1zY5mCMkYLRhl1aIruiEMNh4w9AWntCxoVdCyuiAzpqTIS8X4JZlRynkuqBbX5Aaxo2mkUDOyWLkYtq7Pxx6mNsRdFsbJW-gzdAOGiFk6ZuHnsHVDtgW8JVct9OjuzntOPp-fPtav-eb95W292uRWSD3lum5cLVtWci11uyyhtjU0UEsJpZTS2gq0FY43wJniIIHLhulGJUSIpgIxJw-nv2MMX3uHk9l5tK7vYXBhj4YrISllMoHqBNoYEKNrzRj9DuLBMGqODZnO_DVkjg0ZWpnUUJLenz0AU-I2wmA9_ukrUWqtlol7PHEuBf72Lhq03g3WNT46O5km-P_NfgFbyoK_</recordid><startdate>20041215</startdate><enddate>20041215</enddate><creator>Plata, Desirée L.</creator><creator>Briones, Yadira J.</creator><creator>Wolfe, Rebecca L.</creator><creator>Carroll, Mary K.</creator><creator>Bakrania, Smitesh D.</creator><creator>Mandel, Shira G.</creator><creator>Anderson, Ann M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20041215</creationdate><title>Aerogel-platform optical sensors for oxygen gas</title><author>Plata, Desirée L. ; Briones, Yadira J. ; Wolfe, Rebecca L. ; Carroll, Mary K. ; Bakrania, Smitesh D. ; Mandel, Shira G. ; Anderson, Ann M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9bdeb7f142979f54abcbadab77a4777cc6a9c3e2da2182a7a27d19d8dab33d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Physics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plata, Desirée L.</creatorcontrib><creatorcontrib>Briones, Yadira J.</creatorcontrib><creatorcontrib>Wolfe, Rebecca L.</creatorcontrib><creatorcontrib>Carroll, Mary K.</creatorcontrib><creatorcontrib>Bakrania, Smitesh D.</creatorcontrib><creatorcontrib>Mandel, Shira G.</creatorcontrib><creatorcontrib>Anderson, Ann M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plata, Desirée L.</au><au>Briones, Yadira J.</au><au>Wolfe, Rebecca L.</au><au>Carroll, Mary K.</au><au>Bakrania, Smitesh D.</au><au>Mandel, Shira G.</au><au>Anderson, Ann M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerogel-platform optical sensors for oxygen gas</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2004-12-15</date><risdate>2004</risdate><volume>350</volume><issue>Complete</issue><spage>326</spage><epage>335</epage><pages>326-335</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>We have developed aerogel-platform gas sensors that respond rapidly to changes in oxygen concentration. The aerogels are prepared via a novel one-step supercritical extraction technique, which employs a metal mold and a commercial hydraulic hot-press. The lack of a solvent extraction step facilitates the entrapment of probe species within the aerogel matrix. The three probes used, tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+], ruthenium(II)4,7-diphenyl-1,10-phenanthroline [Ru(dpp)32+], and platinum octaethylporphine [PtOEP], respond to variations in ambient oxygen concentrations through marked changes in their fluorescence intensity. The probe is added to a tetramethoxysilane (TMOS) precursor mixture before the mixture is poured into the mold; hence, the probe becomes physically entrapped within the aerogel matrix as it forms. We investigated the response of the probes to oxygen in xerogels and in aerogels. Both the aerogels and xerogels have high porosity, which allows for rapid diffusion of gases into these materials. The sensors respond rapidly and reversibly to changes in oxygen concentration. As oxygen concentration decreases, the Ru(dpp)32+ and PtOEP probe fluorescence intensities increase dramatically. The change in intensity of Ru(bpy)32+ is more modest. Ru(dpp)32+-doped aerogels and xerogels respond within 10s and 50s, respectively, whereas PtOEP-doped aerogels respond within 20s.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2004.06.046</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3093 |
ispartof | Journal of non-crystalline solids, 2004-12, Vol.350 (Complete), p.326-335 |
issn | 0022-3093 1873-4812 |
language | eng |
recordid | cdi_proquest_miscellaneous_28370017 |
source | Access via ScienceDirect (Elsevier) |
subjects | Exact sciences and technology General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Physics Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing |
title | Aerogel-platform optical sensors for oxygen gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerogel-platform%20optical%20sensors%20for%20oxygen%20gas&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Plata,%20Desir%C3%A9e%20L.&rft.date=2004-12-15&rft.volume=350&rft.issue=Complete&rft.spage=326&rft.epage=335&rft.pages=326-335&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2004.06.046&rft_dat=%3Cproquest_cross%3E28370017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28370017&rft_id=info:pmid/&rft_els_id=S002230930400821X&rfr_iscdi=true |