Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1
The steady non-isothermal channel flow of Vitreloy-1 (Zr 41.25Ti 13.75Cu 12.5Ni 10Be 22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localizat...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2004-07, Vol.52 (12), p.3403-3412 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3412 |
---|---|
container_issue | 12 |
container_start_page | 3403 |
container_title | Acta materialia |
container_volume | 52 |
creator | Demetriou, Marios D Johnson, William L |
description | The steady non-isothermal channel flow of Vitreloy-1 (Zr
41.25Ti
13.75Cu
12.5Ni
10Be
22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localization is obtained by superimposing the computed flow evolution onto an experimentally developed flow diagram. The coordinate points that mark transition to shear localization form a narrow boundary layer ∼23% of the channel thickness. The deformation-induced enhancement of crystallization kinetics is approximately accounted for by utilizing the shear-rate dependent viscosity law to shift the transformation time in the apparent TTT diagram. The kinetics of crystallization during flow are assessed by superimposing the temperature evolution onto the “shifted” TTT diagram. The coordinate points that mark the onset of crystallization form a boundary layer ∼15% of the channel thickness, which are narrower than the shear localization boundary layer suggesting that crystallites will form in the shear-banded region. |
doi_str_mv | 10.1016/j.actamat.2004.03.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28368787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645404001818</els_id><sourcerecordid>28368787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e6498cf989ce839905117f03f0b6d5ec9ef3f9a42544696000af41c9d145dcd53</originalsourceid><addsrcrecordid>eNqFUE1rVDEUDaJgHf0Jwtvo7k2Tl4_3shIpVgsFF7bdhmty08mYSWqSsYy_3tQZcCkcuBfu-eAeQt4yumaUqfPtGmyDHbT1RKlYU94hnpEztsx8nITkz_vOpR6VkOIleVXrllI2zYKekftvG4Qy-JgfB7uB0p2whNqCrQMkN9hyqA1iDL-hhZyGHyHh36Pbl5Duh9oQ3GFIOY2h5rbBsoN4tMt-uAutYMyHkb0mLzzEim9Oc0VuLz_dXHwZr79-vrr4eD1arpY2ohJ6sV4v2uLCtaaSsdlT7ul35SRajZ57DWKSQiitKKXgBbPaMSGddZKvyPuj70PJP_dYm9mFajFGSJj31UxLz5l7MSsij0Rbcq0FvXkoYQflYBg1T7WarTnVap5qNZR3iK57dwqAaiH6AsmG-k8sNVNqnjrvw5GH_dtfAYupNmCy6EJB24zL4T9JfwCD7ZJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28368787</pqid></control><display><type>article</type><title>Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Demetriou, Marios D ; Johnson, William L</creator><creatorcontrib>Demetriou, Marios D ; Johnson, William L</creatorcontrib><description>The steady non-isothermal channel flow of Vitreloy-1 (Zr
41.25Ti
13.75Cu
12.5Ni
10Be
22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localization is obtained by superimposing the computed flow evolution onto an experimentally developed flow diagram. The coordinate points that mark transition to shear localization form a narrow boundary layer ∼23% of the channel thickness. The deformation-induced enhancement of crystallization kinetics is approximately accounted for by utilizing the shear-rate dependent viscosity law to shift the transformation time in the apparent TTT diagram. The kinetics of crystallization during flow are assessed by superimposing the temperature evolution onto the “shifted” TTT diagram. The coordinate points that mark the onset of crystallization form a boundary layer ∼15% of the channel thickness, which are narrower than the shear localization boundary layer suggesting that crystallites will form in the shear-banded region.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2004.03.034</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Bulk metallic glasses ; Condensed matter: structure, mechanical and thermal properties ; Continuous extrusion ; Crystallization kinetics ; Exact sciences and technology ; Finite element analysis ; Metals. Metallurgy ; Physics ; Shear thinning</subject><ispartof>Acta materialia, 2004-07, Vol.52 (12), p.3403-3412</ispartof><rights>2004 Acta Materialia Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e6498cf989ce839905117f03f0b6d5ec9ef3f9a42544696000af41c9d145dcd53</citedby><cites>FETCH-LOGICAL-c368t-e6498cf989ce839905117f03f0b6d5ec9ef3f9a42544696000af41c9d145dcd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2004.03.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15916672$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Demetriou, Marios D</creatorcontrib><creatorcontrib>Johnson, William L</creatorcontrib><title>Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1</title><title>Acta materialia</title><description>The steady non-isothermal channel flow of Vitreloy-1 (Zr
41.25Ti
13.75Cu
12.5Ni
10Be
22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localization is obtained by superimposing the computed flow evolution onto an experimentally developed flow diagram. The coordinate points that mark transition to shear localization form a narrow boundary layer ∼23% of the channel thickness. The deformation-induced enhancement of crystallization kinetics is approximately accounted for by utilizing the shear-rate dependent viscosity law to shift the transformation time in the apparent TTT diagram. The kinetics of crystallization during flow are assessed by superimposing the temperature evolution onto the “shifted” TTT diagram. The coordinate points that mark the onset of crystallization form a boundary layer ∼15% of the channel thickness, which are narrower than the shear localization boundary layer suggesting that crystallites will form in the shear-banded region.</description><subject>Applied sciences</subject><subject>Bulk metallic glasses</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuous extrusion</subject><subject>Crystallization kinetics</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Shear thinning</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFUE1rVDEUDaJgHf0Jwtvo7k2Tl4_3shIpVgsFF7bdhmty08mYSWqSsYy_3tQZcCkcuBfu-eAeQt4yumaUqfPtGmyDHbT1RKlYU94hnpEztsx8nITkz_vOpR6VkOIleVXrllI2zYKekftvG4Qy-JgfB7uB0p2whNqCrQMkN9hyqA1iDL-hhZyGHyHh36Pbl5Duh9oQ3GFIOY2h5rbBsoN4tMt-uAutYMyHkb0mLzzEim9Oc0VuLz_dXHwZr79-vrr4eD1arpY2ohJ6sV4v2uLCtaaSsdlT7ul35SRajZ57DWKSQiitKKXgBbPaMSGddZKvyPuj70PJP_dYm9mFajFGSJj31UxLz5l7MSsij0Rbcq0FvXkoYQflYBg1T7WarTnVap5qNZR3iK57dwqAaiH6AsmG-k8sNVNqnjrvw5GH_dtfAYupNmCy6EJB24zL4T9JfwCD7ZJI</recordid><startdate>20040712</startdate><enddate>20040712</enddate><creator>Demetriou, Marios D</creator><creator>Johnson, William L</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040712</creationdate><title>Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1</title><author>Demetriou, Marios D ; Johnson, William L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e6498cf989ce839905117f03f0b6d5ec9ef3f9a42544696000af41c9d145dcd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Bulk metallic glasses</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuous extrusion</topic><topic>Crystallization kinetics</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Shear thinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demetriou, Marios D</creatorcontrib><creatorcontrib>Johnson, William L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demetriou, Marios D</au><au>Johnson, William L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1</atitle><jtitle>Acta materialia</jtitle><date>2004-07-12</date><risdate>2004</risdate><volume>52</volume><issue>12</issue><spage>3403</spage><epage>3412</epage><pages>3403-3412</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The steady non-isothermal channel flow of Vitreloy-1 (Zr
41.25Ti
13.75Cu
12.5Ni
10Be
22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localization is obtained by superimposing the computed flow evolution onto an experimentally developed flow diagram. The coordinate points that mark transition to shear localization form a narrow boundary layer ∼23% of the channel thickness. The deformation-induced enhancement of crystallization kinetics is approximately accounted for by utilizing the shear-rate dependent viscosity law to shift the transformation time in the apparent TTT diagram. The kinetics of crystallization during flow are assessed by superimposing the temperature evolution onto the “shifted” TTT diagram. The coordinate points that mark the onset of crystallization form a boundary layer ∼15% of the channel thickness, which are narrower than the shear localization boundary layer suggesting that crystallites will form in the shear-banded region.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2004.03.034</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2004-07, Vol.52 (12), p.3403-3412 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_28368787 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Applied sciences Bulk metallic glasses Condensed matter: structure, mechanical and thermal properties Continuous extrusion Crystallization kinetics Exact sciences and technology Finite element analysis Metals. Metallurgy Physics Shear thinning |
title | Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20flow%20characteristics%20and%20crystallization%20kinetics%20during%20steady%20non-isothermal%20flow%20of%20Vitreloy-1&rft.jtitle=Acta%20materialia&rft.au=Demetriou,%20Marios%20D&rft.date=2004-07-12&rft.volume=52&rft.issue=12&rft.spage=3403&rft.epage=3412&rft.pages=3403-3412&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2004.03.034&rft_dat=%3Cproquest_cross%3E28368787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28368787&rft_id=info:pmid/&rft_els_id=S1359645404001818&rfr_iscdi=true |