Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1

The steady non-isothermal channel flow of Vitreloy-1 (Zr 41.25Ti 13.75Cu 12.5Ni 10Be 22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2004-07, Vol.52 (12), p.3403-3412
Hauptverfasser: Demetriou, Marios D, Johnson, William L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3412
container_issue 12
container_start_page 3403
container_title Acta materialia
container_volume 52
creator Demetriou, Marios D
Johnson, William L
description The steady non-isothermal channel flow of Vitreloy-1 (Zr 41.25Ti 13.75Cu 12.5Ni 10Be 22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localization is obtained by superimposing the computed flow evolution onto an experimentally developed flow diagram. The coordinate points that mark transition to shear localization form a narrow boundary layer ∼23% of the channel thickness. The deformation-induced enhancement of crystallization kinetics is approximately accounted for by utilizing the shear-rate dependent viscosity law to shift the transformation time in the apparent TTT diagram. The kinetics of crystallization during flow are assessed by superimposing the temperature evolution onto the “shifted” TTT diagram. The coordinate points that mark the onset of crystallization form a boundary layer ∼15% of the channel thickness, which are narrower than the shear localization boundary layer suggesting that crystallites will form in the shear-banded region.
doi_str_mv 10.1016/j.actamat.2004.03.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28368787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645404001818</els_id><sourcerecordid>28368787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e6498cf989ce839905117f03f0b6d5ec9ef3f9a42544696000af41c9d145dcd53</originalsourceid><addsrcrecordid>eNqFUE1rVDEUDaJgHf0Jwtvo7k2Tl4_3shIpVgsFF7bdhmty08mYSWqSsYy_3tQZcCkcuBfu-eAeQt4yumaUqfPtGmyDHbT1RKlYU94hnpEztsx8nITkz_vOpR6VkOIleVXrllI2zYKekftvG4Qy-JgfB7uB0p2whNqCrQMkN9hyqA1iDL-hhZyGHyHh36Pbl5Duh9oQ3GFIOY2h5rbBsoN4tMt-uAutYMyHkb0mLzzEim9Oc0VuLz_dXHwZr79-vrr4eD1arpY2ohJ6sV4v2uLCtaaSsdlT7ul35SRajZ57DWKSQiitKKXgBbPaMSGddZKvyPuj70PJP_dYm9mFajFGSJj31UxLz5l7MSsij0Rbcq0FvXkoYQflYBg1T7WarTnVap5qNZR3iK57dwqAaiH6AsmG-k8sNVNqnjrvw5GH_dtfAYupNmCy6EJB24zL4T9JfwCD7ZJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28368787</pqid></control><display><type>article</type><title>Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Demetriou, Marios D ; Johnson, William L</creator><creatorcontrib>Demetriou, Marios D ; Johnson, William L</creatorcontrib><description>The steady non-isothermal channel flow of Vitreloy-1 (Zr 41.25Ti 13.75Cu 12.5Ni 10Be 22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localization is obtained by superimposing the computed flow evolution onto an experimentally developed flow diagram. The coordinate points that mark transition to shear localization form a narrow boundary layer ∼23% of the channel thickness. The deformation-induced enhancement of crystallization kinetics is approximately accounted for by utilizing the shear-rate dependent viscosity law to shift the transformation time in the apparent TTT diagram. The kinetics of crystallization during flow are assessed by superimposing the temperature evolution onto the “shifted” TTT diagram. The coordinate points that mark the onset of crystallization form a boundary layer ∼15% of the channel thickness, which are narrower than the shear localization boundary layer suggesting that crystallites will form in the shear-banded region.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2004.03.034</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Bulk metallic glasses ; Condensed matter: structure, mechanical and thermal properties ; Continuous extrusion ; Crystallization kinetics ; Exact sciences and technology ; Finite element analysis ; Metals. Metallurgy ; Physics ; Shear thinning</subject><ispartof>Acta materialia, 2004-07, Vol.52 (12), p.3403-3412</ispartof><rights>2004 Acta Materialia Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e6498cf989ce839905117f03f0b6d5ec9ef3f9a42544696000af41c9d145dcd53</citedby><cites>FETCH-LOGICAL-c368t-e6498cf989ce839905117f03f0b6d5ec9ef3f9a42544696000af41c9d145dcd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2004.03.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15916672$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Demetriou, Marios D</creatorcontrib><creatorcontrib>Johnson, William L</creatorcontrib><title>Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1</title><title>Acta materialia</title><description>The steady non-isothermal channel flow of Vitreloy-1 (Zr 41.25Ti 13.75Cu 12.5Ni 10Be 22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localization is obtained by superimposing the computed flow evolution onto an experimentally developed flow diagram. The coordinate points that mark transition to shear localization form a narrow boundary layer ∼23% of the channel thickness. The deformation-induced enhancement of crystallization kinetics is approximately accounted for by utilizing the shear-rate dependent viscosity law to shift the transformation time in the apparent TTT diagram. The kinetics of crystallization during flow are assessed by superimposing the temperature evolution onto the “shifted” TTT diagram. The coordinate points that mark the onset of crystallization form a boundary layer ∼15% of the channel thickness, which are narrower than the shear localization boundary layer suggesting that crystallites will form in the shear-banded region.</description><subject>Applied sciences</subject><subject>Bulk metallic glasses</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuous extrusion</subject><subject>Crystallization kinetics</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Shear thinning</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFUE1rVDEUDaJgHf0Jwtvo7k2Tl4_3shIpVgsFF7bdhmty08mYSWqSsYy_3tQZcCkcuBfu-eAeQt4yumaUqfPtGmyDHbT1RKlYU94hnpEztsx8nITkz_vOpR6VkOIleVXrllI2zYKekftvG4Qy-JgfB7uB0p2whNqCrQMkN9hyqA1iDL-hhZyGHyHh36Pbl5Duh9oQ3GFIOY2h5rbBsoN4tMt-uAutYMyHkb0mLzzEim9Oc0VuLz_dXHwZr79-vrr4eD1arpY2ohJ6sV4v2uLCtaaSsdlT7ul35SRajZ57DWKSQiitKKXgBbPaMSGddZKvyPuj70PJP_dYm9mFajFGSJj31UxLz5l7MSsij0Rbcq0FvXkoYQflYBg1T7WarTnVap5qNZR3iK57dwqAaiH6AsmG-k8sNVNqnjrvw5GH_dtfAYupNmCy6EJB24zL4T9JfwCD7ZJI</recordid><startdate>20040712</startdate><enddate>20040712</enddate><creator>Demetriou, Marios D</creator><creator>Johnson, William L</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040712</creationdate><title>Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1</title><author>Demetriou, Marios D ; Johnson, William L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e6498cf989ce839905117f03f0b6d5ec9ef3f9a42544696000af41c9d145dcd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Bulk metallic glasses</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuous extrusion</topic><topic>Crystallization kinetics</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Shear thinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demetriou, Marios D</creatorcontrib><creatorcontrib>Johnson, William L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demetriou, Marios D</au><au>Johnson, William L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1</atitle><jtitle>Acta materialia</jtitle><date>2004-07-12</date><risdate>2004</risdate><volume>52</volume><issue>12</issue><spage>3403</spage><epage>3412</epage><pages>3403-3412</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The steady non-isothermal channel flow of Vitreloy-1 (Zr 41.25Ti 13.75Cu 12.5Ni 10Be 22.5) is simulated by means of finite element modeling. Non-Newtonian flow behavior is accounted for by employing a self-consistent shear-rate dependent flow law. Transition to non-Newtonian flow and shear localization is obtained by superimposing the computed flow evolution onto an experimentally developed flow diagram. The coordinate points that mark transition to shear localization form a narrow boundary layer ∼23% of the channel thickness. The deformation-induced enhancement of crystallization kinetics is approximately accounted for by utilizing the shear-rate dependent viscosity law to shift the transformation time in the apparent TTT diagram. The kinetics of crystallization during flow are assessed by superimposing the temperature evolution onto the “shifted” TTT diagram. The coordinate points that mark the onset of crystallization form a boundary layer ∼15% of the channel thickness, which are narrower than the shear localization boundary layer suggesting that crystallites will form in the shear-banded region.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2004.03.034</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2004-07, Vol.52 (12), p.3403-3412
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_28368787
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Applied sciences
Bulk metallic glasses
Condensed matter: structure, mechanical and thermal properties
Continuous extrusion
Crystallization kinetics
Exact sciences and technology
Finite element analysis
Metals. Metallurgy
Physics
Shear thinning
title Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20flow%20characteristics%20and%20crystallization%20kinetics%20during%20steady%20non-isothermal%20flow%20of%20Vitreloy-1&rft.jtitle=Acta%20materialia&rft.au=Demetriou,%20Marios%20D&rft.date=2004-07-12&rft.volume=52&rft.issue=12&rft.spage=3403&rft.epage=3412&rft.pages=3403-3412&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2004.03.034&rft_dat=%3Cproquest_cross%3E28368787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28368787&rft_id=info:pmid/&rft_els_id=S1359645404001818&rfr_iscdi=true