InZnTiON Channel Layer for Highly Stable Thin-Film Transistors and Light-Emitting Transistors
In this study, we incorporated TiN as a carrier suppressor into an amorphous InZnO channel to achieve stable channels for thin-film transistors (TFTs) and light-emitting transistors (LETs). The low electronegativity and standard electrode potential of the Ti dopant led to a reduction in the number o...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-07, Vol.15 (29), p.35149-35160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35160 |
---|---|
container_issue | 29 |
container_start_page | 35149 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Lee, Ju-Hyeon Park, Jung-Min Park, Yu Jung Seo, Jung Hwa Kim, Han-Ki |
description | In this study, we incorporated TiN as a carrier suppressor into an amorphous InZnO channel to achieve stable channels for thin-film transistors (TFTs) and light-emitting transistors (LETs). The low electronegativity and standard electrode potential of the Ti dopant led to a reduction in the number of oxygen vacancies in the InZnO channel. Moreover, the substitution of nitrogen into the oxygen sites of InZnO effectively decreased the excess electrons. As a result, the cosputtering of the TiN dopant resulted in a decrease in the carrier concentration of the InZnO channel, serving as an effective carrier suppressor. Due to the distinct structures of TiN and InZnO, the TiN-doped InZnO channel exhibited a completely amorphous structure and a featureless surface morphology. The presence of oxygen vacancies in the InZnO channel creates trap states for electrons and holes. Consequently, the TFT with the InZnTiON channel demonstrated an improved subthreshold swing and enhanced stability during the gate bias stress test. Furthermore, the threshold voltage shift (ΔV th) changed from 3.29 to 0.86 V in the positive bias stress test and from −0.92 to −0.09 V in the negative bias stress test. Additionally, we employed an InZnTiON channel in LETs as a substitute for organic semiconductors. The reduction in the number of oxygen vacancies effectively prevented exciton quenching caused by hole traps within the vacancies. Consequently, appropriate TiN doping in the InZnO channel enhanced the intensity of the LET devices. |
doi_str_mv | 10.1021/acsami.3c04178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2836876153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836876153</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-228063c8d285a4306af6a7e8e6fbc4b60fccaa9216b16e9cc5e060c0148fc9253</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHiVHETrzq2l6lLG5QXEH60WQkGbpltGmM2kP---tdIoXT-_B-7wv730AuMVoihHBj0oHVdsp1YjhRJyBMU4ZiwSJyflvz9gIXIWwR4hTguJLMKIJoyknyRh8rNy7y-36Bc52yjlTwUwdjYdl4-HSbnfVEb62qqgMzHfWRQtb1TD3ygUb2sYHqNwGZj3XRvPatq1127_ja3BRqiqYm1OdgLfFPJ8to2z9vJo9ZZGiFLURIaI_TYsNEbFiFHFVcpUYYXhZaFZwVGqtVEowLzA3qdaxQRxphJkodUpiOgH3Q-7BN5-dCa2sbdCmqpQzTRckEZSLhOOY9uh0QLVvQvCmlAdva-WPEiP5rVQOSuVJab9wd8ruitpsfvEfhz3wMAD9otw3nXf9q_-lfQFSU4EF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836876153</pqid></control><display><type>article</type><title>InZnTiON Channel Layer for Highly Stable Thin-Film Transistors and Light-Emitting Transistors</title><source>ACS Publications</source><creator>Lee, Ju-Hyeon ; Park, Jung-Min ; Park, Yu Jung ; Seo, Jung Hwa ; Kim, Han-Ki</creator><creatorcontrib>Lee, Ju-Hyeon ; Park, Jung-Min ; Park, Yu Jung ; Seo, Jung Hwa ; Kim, Han-Ki</creatorcontrib><description>In this study, we incorporated TiN as a carrier suppressor into an amorphous InZnO channel to achieve stable channels for thin-film transistors (TFTs) and light-emitting transistors (LETs). The low electronegativity and standard electrode potential of the Ti dopant led to a reduction in the number of oxygen vacancies in the InZnO channel. Moreover, the substitution of nitrogen into the oxygen sites of InZnO effectively decreased the excess electrons. As a result, the cosputtering of the TiN dopant resulted in a decrease in the carrier concentration of the InZnO channel, serving as an effective carrier suppressor. Due to the distinct structures of TiN and InZnO, the TiN-doped InZnO channel exhibited a completely amorphous structure and a featureless surface morphology. The presence of oxygen vacancies in the InZnO channel creates trap states for electrons and holes. Consequently, the TFT with the InZnTiON channel demonstrated an improved subthreshold swing and enhanced stability during the gate bias stress test. Furthermore, the threshold voltage shift (ΔV th) changed from 3.29 to 0.86 V in the positive bias stress test and from −0.92 to −0.09 V in the negative bias stress test. Additionally, we employed an InZnTiON channel in LETs as a substitute for organic semiconductors. The reduction in the number of oxygen vacancies effectively prevented exciton quenching caused by hole traps within the vacancies. Consequently, appropriate TiN doping in the InZnO channel enhanced the intensity of the LET devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c04178</identifier><identifier>PMID: 37439627</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials & interfaces, 2023-07, Vol.15 (29), p.35149-35160</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-228063c8d285a4306af6a7e8e6fbc4b60fccaa9216b16e9cc5e060c0148fc9253</citedby><cites>FETCH-LOGICAL-a330t-228063c8d285a4306af6a7e8e6fbc4b60fccaa9216b16e9cc5e060c0148fc9253</cites><orcidid>0000-0003-4650-6245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c04178$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c04178$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37439627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Ju-Hyeon</creatorcontrib><creatorcontrib>Park, Jung-Min</creatorcontrib><creatorcontrib>Park, Yu Jung</creatorcontrib><creatorcontrib>Seo, Jung Hwa</creatorcontrib><creatorcontrib>Kim, Han-Ki</creatorcontrib><title>InZnTiON Channel Layer for Highly Stable Thin-Film Transistors and Light-Emitting Transistors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this study, we incorporated TiN as a carrier suppressor into an amorphous InZnO channel to achieve stable channels for thin-film transistors (TFTs) and light-emitting transistors (LETs). The low electronegativity and standard electrode potential of the Ti dopant led to a reduction in the number of oxygen vacancies in the InZnO channel. Moreover, the substitution of nitrogen into the oxygen sites of InZnO effectively decreased the excess electrons. As a result, the cosputtering of the TiN dopant resulted in a decrease in the carrier concentration of the InZnO channel, serving as an effective carrier suppressor. Due to the distinct structures of TiN and InZnO, the TiN-doped InZnO channel exhibited a completely amorphous structure and a featureless surface morphology. The presence of oxygen vacancies in the InZnO channel creates trap states for electrons and holes. Consequently, the TFT with the InZnTiON channel demonstrated an improved subthreshold swing and enhanced stability during the gate bias stress test. Furthermore, the threshold voltage shift (ΔV th) changed from 3.29 to 0.86 V in the positive bias stress test and from −0.92 to −0.09 V in the negative bias stress test. Additionally, we employed an InZnTiON channel in LETs as a substitute for organic semiconductors. The reduction in the number of oxygen vacancies effectively prevented exciton quenching caused by hole traps within the vacancies. Consequently, appropriate TiN doping in the InZnO channel enhanced the intensity of the LET devices.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk6vHiVHETrzq2l6lLG5QXEH60WQkGbpltGmM2kP---tdIoXT-_B-7wv730AuMVoihHBj0oHVdsp1YjhRJyBMU4ZiwSJyflvz9gIXIWwR4hTguJLMKIJoyknyRh8rNy7y-36Bc52yjlTwUwdjYdl4-HSbnfVEb62qqgMzHfWRQtb1TD3ygUb2sYHqNwGZj3XRvPatq1127_ja3BRqiqYm1OdgLfFPJ8to2z9vJo9ZZGiFLURIaI_TYsNEbFiFHFVcpUYYXhZaFZwVGqtVEowLzA3qdaxQRxphJkodUpiOgH3Q-7BN5-dCa2sbdCmqpQzTRckEZSLhOOY9uh0QLVvQvCmlAdva-WPEiP5rVQOSuVJab9wd8ruitpsfvEfhz3wMAD9otw3nXf9q_-lfQFSU4EF</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Lee, Ju-Hyeon</creator><creator>Park, Jung-Min</creator><creator>Park, Yu Jung</creator><creator>Seo, Jung Hwa</creator><creator>Kim, Han-Ki</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4650-6245</orcidid></search><sort><creationdate>20230726</creationdate><title>InZnTiON Channel Layer for Highly Stable Thin-Film Transistors and Light-Emitting Transistors</title><author>Lee, Ju-Hyeon ; Park, Jung-Min ; Park, Yu Jung ; Seo, Jung Hwa ; Kim, Han-Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-228063c8d285a4306af6a7e8e6fbc4b60fccaa9216b16e9cc5e060c0148fc9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ju-Hyeon</creatorcontrib><creatorcontrib>Park, Jung-Min</creatorcontrib><creatorcontrib>Park, Yu Jung</creatorcontrib><creatorcontrib>Seo, Jung Hwa</creatorcontrib><creatorcontrib>Kim, Han-Ki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ju-Hyeon</au><au>Park, Jung-Min</au><au>Park, Yu Jung</au><au>Seo, Jung Hwa</au><au>Kim, Han-Ki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InZnTiON Channel Layer for Highly Stable Thin-Film Transistors and Light-Emitting Transistors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-07-26</date><risdate>2023</risdate><volume>15</volume><issue>29</issue><spage>35149</spage><epage>35160</epage><pages>35149-35160</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this study, we incorporated TiN as a carrier suppressor into an amorphous InZnO channel to achieve stable channels for thin-film transistors (TFTs) and light-emitting transistors (LETs). The low electronegativity and standard electrode potential of the Ti dopant led to a reduction in the number of oxygen vacancies in the InZnO channel. Moreover, the substitution of nitrogen into the oxygen sites of InZnO effectively decreased the excess electrons. As a result, the cosputtering of the TiN dopant resulted in a decrease in the carrier concentration of the InZnO channel, serving as an effective carrier suppressor. Due to the distinct structures of TiN and InZnO, the TiN-doped InZnO channel exhibited a completely amorphous structure and a featureless surface morphology. The presence of oxygen vacancies in the InZnO channel creates trap states for electrons and holes. Consequently, the TFT with the InZnTiON channel demonstrated an improved subthreshold swing and enhanced stability during the gate bias stress test. Furthermore, the threshold voltage shift (ΔV th) changed from 3.29 to 0.86 V in the positive bias stress test and from −0.92 to −0.09 V in the negative bias stress test. Additionally, we employed an InZnTiON channel in LETs as a substitute for organic semiconductors. The reduction in the number of oxygen vacancies effectively prevented exciton quenching caused by hole traps within the vacancies. Consequently, appropriate TiN doping in the InZnO channel enhanced the intensity of the LET devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37439627</pmid><doi>10.1021/acsami.3c04178</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4650-6245</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-07, Vol.15 (29), p.35149-35160 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2836876153 |
source | ACS Publications |
subjects | Functional Inorganic Materials and Devices |
title | InZnTiON Channel Layer for Highly Stable Thin-Film Transistors and Light-Emitting Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InZnTiON%20Channel%20Layer%20for%20Highly%20Stable%20Thin-Film%20Transistors%20and%20Light-Emitting%20Transistors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lee,%20Ju-Hyeon&rft.date=2023-07-26&rft.volume=15&rft.issue=29&rft.spage=35149&rft.epage=35160&rft.pages=35149-35160&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c04178&rft_dat=%3Cproquest_cross%3E2836876153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836876153&rft_id=info:pmid/37439627&rfr_iscdi=true |