An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences
Context: Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement. Purpose: To assess the feasibility of automating the identification of a conversational feature, Connectional Silence, which is associated with important patien...
Gespeichert in:
Veröffentlicht in: | Journal of palliative medicine 2023-12, Vol.26 (12), p.1627-1633 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1633 |
---|---|
container_issue | 12 |
container_start_page | 1627 |
container_title | Journal of palliative medicine |
container_volume | 26 |
creator | Matt, Jeremy E Rizzo, Donna M Javed, Ali Eppstein, Margaret J Manukyan, Viktoria Gramling, Cailin Dewoolkar, Advik Mandar Gramling, Robert |
description | Context:
Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement.
Purpose:
To assess the feasibility of automating the identification of a conversational feature,
Connectional Silence,
which is associated with important patient outcomes.
Methods:
Using audio recordings from the Palliative Care Communication Research Initiative cohort study, we develop and test an automated measurement pipeline comprising three machine-learning (ML) tools—a random forest algorithm and a custom convolutional neural network that operate in parallel on audio recordings, and subsequently a natural language processing algorithm that uses brief excerpts of automated speech-to-text transcripts.
Results:
Our ML pipeline identified
Connectional Silence
with an overall sensitivity of 84% and specificity of 92%. For
Emotional
and
Invitational
subtypes, we observed sensitivities of 68% and 67%, and specificities of 95% and 97%, respectively.
Conclusion:
These findings support the capacity for coordinated and complementary ML methods to fully automate the identification of
Connectional Silence
in natural hospital-based clinical conversations. |
doi_str_mv | 10.1089/jpm.2023.0087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2836874621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836874621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-13971e7620f8324d8fcdc812fa91d25e6e6ca69e15b13718c8eb997bb4add31b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EolAYWVFGlhR_JLE9VhUflYpAgs6WY1_AVeKEOJXov8ehhZXpXp2ee6V7ELoieEawkLebrplRTNkMY8GP0BnJc55ynuHjmLEs0oISMUHnIWxwRCTOT9GE8SzDhOdnaD33ydy02zA4o-tEe5us4OsnP2nz4TykK9C9d_49eXEd1HGTDG2ytOAHV-2SRes9mMG1Pp68uhq8gXCBTipdB7g8zCla39-9LR7T1fPDcjFfpYYxPqSESU6AFxRXgtHMispYIwittCSW5lBAYXQhgeQlYZwII6CUkpdlpq1lpGRTdLPv7fr2cwthUI0LBupae4g_KSpYIXgWFUQ03aOmb0PooVJd7xrd7xTBajSpokk1mlSjychfH6q3ZQP2j_5VFwG2B8a19r52UEI__FP7DU7ugBc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836874621</pqid></control><display><type>article</type><title>An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Matt, Jeremy E ; Rizzo, Donna M ; Javed, Ali ; Eppstein, Margaret J ; Manukyan, Viktoria ; Gramling, Cailin ; Dewoolkar, Advik Mandar ; Gramling, Robert</creator><creatorcontrib>Matt, Jeremy E ; Rizzo, Donna M ; Javed, Ali ; Eppstein, Margaret J ; Manukyan, Viktoria ; Gramling, Cailin ; Dewoolkar, Advik Mandar ; Gramling, Robert</creatorcontrib><description>Context:
Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement.
Purpose:
To assess the feasibility of automating the identification of a conversational feature,
Connectional Silence,
which is associated with important patient outcomes.
Methods:
Using audio recordings from the Palliative Care Communication Research Initiative cohort study, we develop and test an automated measurement pipeline comprising three machine-learning (ML) tools—a random forest algorithm and a custom convolutional neural network that operate in parallel on audio recordings, and subsequently a natural language processing algorithm that uses brief excerpts of automated speech-to-text transcripts.
Results:
Our ML pipeline identified
Connectional Silence
with an overall sensitivity of 84% and specificity of 92%. For
Emotional
and
Invitational
subtypes, we observed sensitivities of 68% and 67%, and specificities of 95% and 97%, respectively.
Conclusion:
These findings support the capacity for coordinated and complementary ML methods to fully automate the identification of
Connectional Silence
in natural hospital-based clinical conversations.</description><identifier>ISSN: 1096-6218</identifier><identifier>EISSN: 1557-7740</identifier><identifier>DOI: 10.1089/jpm.2023.0087</identifier><identifier>PMID: 37440175</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc., publishers</publisher><subject>Algorithms ; Cohort Studies ; Communication ; Humans ; Machine Learning ; Natural Language Processing ; Original Articles</subject><ispartof>Journal of palliative medicine, 2023-12, Vol.26 (12), p.1627-1633</ispartof><rights>2023, Mary Ann Liebert, Inc., publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-13971e7620f8324d8fcdc812fa91d25e6e6ca69e15b13718c8eb997bb4add31b3</citedby><cites>FETCH-LOGICAL-c337t-13971e7620f8324d8fcdc812fa91d25e6e6ca69e15b13718c8eb997bb4add31b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37440175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matt, Jeremy E</creatorcontrib><creatorcontrib>Rizzo, Donna M</creatorcontrib><creatorcontrib>Javed, Ali</creatorcontrib><creatorcontrib>Eppstein, Margaret J</creatorcontrib><creatorcontrib>Manukyan, Viktoria</creatorcontrib><creatorcontrib>Gramling, Cailin</creatorcontrib><creatorcontrib>Dewoolkar, Advik Mandar</creatorcontrib><creatorcontrib>Gramling, Robert</creatorcontrib><title>An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences</title><title>Journal of palliative medicine</title><addtitle>J Palliat Med</addtitle><description>Context:
Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement.
Purpose:
To assess the feasibility of automating the identification of a conversational feature,
Connectional Silence,
which is associated with important patient outcomes.
Methods:
Using audio recordings from the Palliative Care Communication Research Initiative cohort study, we develop and test an automated measurement pipeline comprising three machine-learning (ML) tools—a random forest algorithm and a custom convolutional neural network that operate in parallel on audio recordings, and subsequently a natural language processing algorithm that uses brief excerpts of automated speech-to-text transcripts.
Results:
Our ML pipeline identified
Connectional Silence
with an overall sensitivity of 84% and specificity of 92%. For
Emotional
and
Invitational
subtypes, we observed sensitivities of 68% and 67%, and specificities of 95% and 97%, respectively.
Conclusion:
These findings support the capacity for coordinated and complementary ML methods to fully automate the identification of
Connectional Silence
in natural hospital-based clinical conversations.</description><subject>Algorithms</subject><subject>Cohort Studies</subject><subject>Communication</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Natural Language Processing</subject><subject>Original Articles</subject><issn>1096-6218</issn><issn>1557-7740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EolAYWVFGlhR_JLE9VhUflYpAgs6WY1_AVeKEOJXov8ehhZXpXp2ee6V7ELoieEawkLebrplRTNkMY8GP0BnJc55ynuHjmLEs0oISMUHnIWxwRCTOT9GE8SzDhOdnaD33ydy02zA4o-tEe5us4OsnP2nz4TykK9C9d_49eXEd1HGTDG2ytOAHV-2SRes9mMG1Pp68uhq8gXCBTipdB7g8zCla39-9LR7T1fPDcjFfpYYxPqSESU6AFxRXgtHMispYIwittCSW5lBAYXQhgeQlYZwII6CUkpdlpq1lpGRTdLPv7fr2cwthUI0LBupae4g_KSpYIXgWFUQ03aOmb0PooVJd7xrd7xTBajSpokk1mlSjychfH6q3ZQP2j_5VFwG2B8a19r52UEI__FP7DU7ugBc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Matt, Jeremy E</creator><creator>Rizzo, Donna M</creator><creator>Javed, Ali</creator><creator>Eppstein, Margaret J</creator><creator>Manukyan, Viktoria</creator><creator>Gramling, Cailin</creator><creator>Dewoolkar, Advik Mandar</creator><creator>Gramling, Robert</creator><general>Mary Ann Liebert, Inc., publishers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231201</creationdate><title>An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences</title><author>Matt, Jeremy E ; Rizzo, Donna M ; Javed, Ali ; Eppstein, Margaret J ; Manukyan, Viktoria ; Gramling, Cailin ; Dewoolkar, Advik Mandar ; Gramling, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-13971e7620f8324d8fcdc812fa91d25e6e6ca69e15b13718c8eb997bb4add31b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cohort Studies</topic><topic>Communication</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Natural Language Processing</topic><topic>Original Articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matt, Jeremy E</creatorcontrib><creatorcontrib>Rizzo, Donna M</creatorcontrib><creatorcontrib>Javed, Ali</creatorcontrib><creatorcontrib>Eppstein, Margaret J</creatorcontrib><creatorcontrib>Manukyan, Viktoria</creatorcontrib><creatorcontrib>Gramling, Cailin</creatorcontrib><creatorcontrib>Dewoolkar, Advik Mandar</creatorcontrib><creatorcontrib>Gramling, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of palliative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matt, Jeremy E</au><au>Rizzo, Donna M</au><au>Javed, Ali</au><au>Eppstein, Margaret J</au><au>Manukyan, Viktoria</au><au>Gramling, Cailin</au><au>Dewoolkar, Advik Mandar</au><au>Gramling, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences</atitle><jtitle>Journal of palliative medicine</jtitle><addtitle>J Palliat Med</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>26</volume><issue>12</issue><spage>1627</spage><epage>1633</epage><pages>1627-1633</pages><issn>1096-6218</issn><eissn>1557-7740</eissn><abstract>Context:
Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement.
Purpose:
To assess the feasibility of automating the identification of a conversational feature,
Connectional Silence,
which is associated with important patient outcomes.
Methods:
Using audio recordings from the Palliative Care Communication Research Initiative cohort study, we develop and test an automated measurement pipeline comprising three machine-learning (ML) tools—a random forest algorithm and a custom convolutional neural network that operate in parallel on audio recordings, and subsequently a natural language processing algorithm that uses brief excerpts of automated speech-to-text transcripts.
Results:
Our ML pipeline identified
Connectional Silence
with an overall sensitivity of 84% and specificity of 92%. For
Emotional
and
Invitational
subtypes, we observed sensitivities of 68% and 67%, and specificities of 95% and 97%, respectively.
Conclusion:
These findings support the capacity for coordinated and complementary ML methods to fully automate the identification of
Connectional Silence
in natural hospital-based clinical conversations.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc., publishers</pub><pmid>37440175</pmid><doi>10.1089/jpm.2023.0087</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-6218 |
ispartof | Journal of palliative medicine, 2023-12, Vol.26 (12), p.1627-1633 |
issn | 1096-6218 1557-7740 |
language | eng |
recordid | cdi_proquest_miscellaneous_2836874621 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Algorithms Cohort Studies Communication Humans Machine Learning Natural Language Processing Original Articles |
title | An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Acoustical%20and%20Lexical%20Machine-Learning%20Pipeline%20to%20Identify%20Connectional%20Silences&rft.jtitle=Journal%20of%20palliative%20medicine&rft.au=Matt,%20Jeremy%20E&rft.date=2023-12-01&rft.volume=26&rft.issue=12&rft.spage=1627&rft.epage=1633&rft.pages=1627-1633&rft.issn=1096-6218&rft.eissn=1557-7740&rft_id=info:doi/10.1089/jpm.2023.0087&rft_dat=%3Cproquest_cross%3E2836874621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836874621&rft_id=info:pmid/37440175&rfr_iscdi=true |