Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis
Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Ou...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-07, Vol.17 (14), p.13851-13860 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13860 |
---|---|
container_issue | 14 |
container_start_page | 13851 |
container_title | ACS nano |
container_volume | 17 |
creator | Fu, Haoyang Li, Ke Zhang, Chenfei Zhang, Jianghong Liu, Jiyuan Chen, Xi Chen, Guoliang Sun, Yongyang Li, Shuzhou Ling, Lan |
description | Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts. |
doi_str_mv | 10.1021/acsnano.3c03610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2836874616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836874616</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-2f8776b029af613f42c19b64c54d261fcdc2e9c065426ec8289316d12ab7404c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qRHQbrlV9P2WMqmwmQHFbyVNE01o022pBXmX29G626eXnjv8z68fAG4RXCOIEYLLpzm2syJgIQheAamKCUshAn7OD-9IzQBV85tIYziJGaXYEJiSiFK8BTsX7j4UlqGa8mtVvozzJxTrpNVsNl1qlU_vFNGB6YOePDq540Ms860QW6MrZQepkv9razRrdRdUBsbZELIRlp-1Kx80yM573hz8OprcFHzxsmbsc7A-2r5lj-F683jc56tQ-6v60JcJ3HMSohTXjNEaooFSktGRUQrzFAtKoFlKiCLKGZSJDhJCWIVwryMKaSCzMD94N1Zs--l64pWOX9Ww7U0vStwQlgSU4aYRxcDKqxxzsq62FnVcnsoECyOORdjzsWYs9-4G-V92crqxP8F64GHAfCbxdb0Vvu__qv7BUUpigE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836874616</pqid></control><display><type>article</type><title>Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis</title><source>ACS Publications</source><creator>Fu, Haoyang ; Li, Ke ; Zhang, Chenfei ; Zhang, Jianghong ; Liu, Jiyuan ; Chen, Xi ; Chen, Guoliang ; Sun, Yongyang ; Li, Shuzhou ; Ling, Lan</creator><creatorcontrib>Fu, Haoyang ; Li, Ke ; Zhang, Chenfei ; Zhang, Jianghong ; Liu, Jiyuan ; Chen, Xi ; Chen, Guoliang ; Sun, Yongyang ; Li, Shuzhou ; Ling, Lan</creatorcontrib><description>Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c03610</identifier><identifier>PMID: 37440182</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2023-07, Vol.17 (14), p.13851-13860</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-2f8776b029af613f42c19b64c54d261fcdc2e9c065426ec8289316d12ab7404c3</citedby><cites>FETCH-LOGICAL-a374t-2f8776b029af613f42c19b64c54d261fcdc2e9c065426ec8289316d12ab7404c3</cites><orcidid>0000-0002-3140-3983 ; 0000-0001-7348-4657 ; 0000-0003-3620-3670 ; 0000-0002-2159-2602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c03610$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c03610$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37440182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Haoyang</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Zhang, Chenfei</creatorcontrib><creatorcontrib>Zhang, Jianghong</creatorcontrib><creatorcontrib>Liu, Jiyuan</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Sun, Yongyang</creatorcontrib><creatorcontrib>Li, Shuzhou</creatorcontrib><creatorcontrib>Ling, Lan</creatorcontrib><title>Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7P3qRHQbrlV9P2WMqmwmQHFbyVNE01o022pBXmX29G626eXnjv8z68fAG4RXCOIEYLLpzm2syJgIQheAamKCUshAn7OD-9IzQBV85tIYziJGaXYEJiSiFK8BTsX7j4UlqGa8mtVvozzJxTrpNVsNl1qlU_vFNGB6YOePDq540Ms860QW6MrZQepkv9razRrdRdUBsbZELIRlp-1Kx80yM573hz8OprcFHzxsmbsc7A-2r5lj-F683jc56tQ-6v60JcJ3HMSohTXjNEaooFSktGRUQrzFAtKoFlKiCLKGZSJDhJCWIVwryMKaSCzMD94N1Zs--l64pWOX9Ww7U0vStwQlgSU4aYRxcDKqxxzsq62FnVcnsoECyOORdjzsWYs9-4G-V92crqxP8F64GHAfCbxdb0Vvu__qv7BUUpigE</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Fu, Haoyang</creator><creator>Li, Ke</creator><creator>Zhang, Chenfei</creator><creator>Zhang, Jianghong</creator><creator>Liu, Jiyuan</creator><creator>Chen, Xi</creator><creator>Chen, Guoliang</creator><creator>Sun, Yongyang</creator><creator>Li, Shuzhou</creator><creator>Ling, Lan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3140-3983</orcidid><orcidid>https://orcid.org/0000-0001-7348-4657</orcidid><orcidid>https://orcid.org/0000-0003-3620-3670</orcidid><orcidid>https://orcid.org/0000-0002-2159-2602</orcidid></search><sort><creationdate>20230725</creationdate><title>Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis</title><author>Fu, Haoyang ; Li, Ke ; Zhang, Chenfei ; Zhang, Jianghong ; Liu, Jiyuan ; Chen, Xi ; Chen, Guoliang ; Sun, Yongyang ; Li, Shuzhou ; Ling, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-2f8776b029af613f42c19b64c54d261fcdc2e9c065426ec8289316d12ab7404c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haoyang</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Zhang, Chenfei</creatorcontrib><creatorcontrib>Zhang, Jianghong</creatorcontrib><creatorcontrib>Liu, Jiyuan</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Sun, Yongyang</creatorcontrib><creatorcontrib>Li, Shuzhou</creatorcontrib><creatorcontrib>Ling, Lan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Haoyang</au><au>Li, Ke</au><au>Zhang, Chenfei</au><au>Zhang, Jianghong</au><au>Liu, Jiyuan</au><au>Chen, Xi</au><au>Chen, Guoliang</au><au>Sun, Yongyang</au><au>Li, Shuzhou</au><au>Ling, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>17</volume><issue>14</issue><spage>13851</spage><epage>13860</epage><pages>13851-13860</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37440182</pmid><doi>10.1021/acsnano.3c03610</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3140-3983</orcidid><orcidid>https://orcid.org/0000-0001-7348-4657</orcidid><orcidid>https://orcid.org/0000-0003-3620-3670</orcidid><orcidid>https://orcid.org/0000-0002-2159-2602</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-07, Vol.17 (14), p.13851-13860 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2836874616 |
source | ACS Publications |
title | Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-Learning-Assisted%20Optimization%20of%20a%20Single-Atom%20Coordination%20Environment%20for%20Accelerated%20Fenton%20Catalysis&rft.jtitle=ACS%20nano&rft.au=Fu,%20Haoyang&rft.date=2023-07-25&rft.volume=17&rft.issue=14&rft.spage=13851&rft.epage=13860&rft.pages=13851-13860&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c03610&rft_dat=%3Cproquest_cross%3E2836874616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836874616&rft_id=info:pmid/37440182&rfr_iscdi=true |