Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis

Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-07, Vol.17 (14), p.13851-13860
Hauptverfasser: Fu, Haoyang, Li, Ke, Zhang, Chenfei, Zhang, Jianghong, Liu, Jiyuan, Chen, Xi, Chen, Guoliang, Sun, Yongyang, Li, Shuzhou, Ling, Lan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13860
container_issue 14
container_start_page 13851
container_title ACS nano
container_volume 17
creator Fu, Haoyang
Li, Ke
Zhang, Chenfei
Zhang, Jianghong
Liu, Jiyuan
Chen, Xi
Chen, Guoliang
Sun, Yongyang
Li, Shuzhou
Ling, Lan
description Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.
doi_str_mv 10.1021/acsnano.3c03610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2836874616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836874616</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-2f8776b029af613f42c19b64c54d261fcdc2e9c065426ec8289316d12ab7404c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qRHQbrlV9P2WMqmwmQHFbyVNE01o022pBXmX29G626eXnjv8z68fAG4RXCOIEYLLpzm2syJgIQheAamKCUshAn7OD-9IzQBV85tIYziJGaXYEJiSiFK8BTsX7j4UlqGa8mtVvozzJxTrpNVsNl1qlU_vFNGB6YOePDq540Ms860QW6MrZQepkv9razRrdRdUBsbZELIRlp-1Kx80yM573hz8OprcFHzxsmbsc7A-2r5lj-F683jc56tQ-6v60JcJ3HMSohTXjNEaooFSktGRUQrzFAtKoFlKiCLKGZSJDhJCWIVwryMKaSCzMD94N1Zs--l64pWOX9Ww7U0vStwQlgSU4aYRxcDKqxxzsq62FnVcnsoECyOORdjzsWYs9-4G-V92crqxP8F64GHAfCbxdb0Vvu__qv7BUUpigE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836874616</pqid></control><display><type>article</type><title>Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis</title><source>ACS Publications</source><creator>Fu, Haoyang ; Li, Ke ; Zhang, Chenfei ; Zhang, Jianghong ; Liu, Jiyuan ; Chen, Xi ; Chen, Guoliang ; Sun, Yongyang ; Li, Shuzhou ; Ling, Lan</creator><creatorcontrib>Fu, Haoyang ; Li, Ke ; Zhang, Chenfei ; Zhang, Jianghong ; Liu, Jiyuan ; Chen, Xi ; Chen, Guoliang ; Sun, Yongyang ; Li, Shuzhou ; Ling, Lan</creatorcontrib><description>Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c03610</identifier><identifier>PMID: 37440182</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2023-07, Vol.17 (14), p.13851-13860</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-2f8776b029af613f42c19b64c54d261fcdc2e9c065426ec8289316d12ab7404c3</citedby><cites>FETCH-LOGICAL-a374t-2f8776b029af613f42c19b64c54d261fcdc2e9c065426ec8289316d12ab7404c3</cites><orcidid>0000-0002-3140-3983 ; 0000-0001-7348-4657 ; 0000-0003-3620-3670 ; 0000-0002-2159-2602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c03610$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c03610$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37440182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Haoyang</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Zhang, Chenfei</creatorcontrib><creatorcontrib>Zhang, Jianghong</creatorcontrib><creatorcontrib>Liu, Jiyuan</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Sun, Yongyang</creatorcontrib><creatorcontrib>Li, Shuzhou</creatorcontrib><creatorcontrib>Ling, Lan</creatorcontrib><title>Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7P3qRHQbrlV9P2WMqmwmQHFbyVNE01o022pBXmX29G626eXnjv8z68fAG4RXCOIEYLLpzm2syJgIQheAamKCUshAn7OD-9IzQBV85tIYziJGaXYEJiSiFK8BTsX7j4UlqGa8mtVvozzJxTrpNVsNl1qlU_vFNGB6YOePDq540Ms860QW6MrZQepkv9razRrdRdUBsbZELIRlp-1Kx80yM573hz8OprcFHzxsmbsc7A-2r5lj-F683jc56tQ-6v60JcJ3HMSohTXjNEaooFSktGRUQrzFAtKoFlKiCLKGZSJDhJCWIVwryMKaSCzMD94N1Zs--l64pWOX9Ww7U0vStwQlgSU4aYRxcDKqxxzsq62FnVcnsoECyOORdjzsWYs9-4G-V92crqxP8F64GHAfCbxdb0Vvu__qv7BUUpigE</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Fu, Haoyang</creator><creator>Li, Ke</creator><creator>Zhang, Chenfei</creator><creator>Zhang, Jianghong</creator><creator>Liu, Jiyuan</creator><creator>Chen, Xi</creator><creator>Chen, Guoliang</creator><creator>Sun, Yongyang</creator><creator>Li, Shuzhou</creator><creator>Ling, Lan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3140-3983</orcidid><orcidid>https://orcid.org/0000-0001-7348-4657</orcidid><orcidid>https://orcid.org/0000-0003-3620-3670</orcidid><orcidid>https://orcid.org/0000-0002-2159-2602</orcidid></search><sort><creationdate>20230725</creationdate><title>Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis</title><author>Fu, Haoyang ; Li, Ke ; Zhang, Chenfei ; Zhang, Jianghong ; Liu, Jiyuan ; Chen, Xi ; Chen, Guoliang ; Sun, Yongyang ; Li, Shuzhou ; Ling, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-2f8776b029af613f42c19b64c54d261fcdc2e9c065426ec8289316d12ab7404c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haoyang</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Zhang, Chenfei</creatorcontrib><creatorcontrib>Zhang, Jianghong</creatorcontrib><creatorcontrib>Liu, Jiyuan</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Sun, Yongyang</creatorcontrib><creatorcontrib>Li, Shuzhou</creatorcontrib><creatorcontrib>Ling, Lan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Haoyang</au><au>Li, Ke</au><au>Zhang, Chenfei</au><au>Zhang, Jianghong</au><au>Liu, Jiyuan</au><au>Chen, Xi</au><au>Chen, Guoliang</au><au>Sun, Yongyang</au><au>Li, Shuzhou</au><au>Ling, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>17</volume><issue>14</issue><spage>13851</spage><epage>13860</epage><pages>13851-13860</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37440182</pmid><doi>10.1021/acsnano.3c03610</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3140-3983</orcidid><orcidid>https://orcid.org/0000-0001-7348-4657</orcidid><orcidid>https://orcid.org/0000-0003-3620-3670</orcidid><orcidid>https://orcid.org/0000-0002-2159-2602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-07, Vol.17 (14), p.13851-13860
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2836874616
source ACS Publications
title Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-Learning-Assisted%20Optimization%20of%20a%20Single-Atom%20Coordination%20Environment%20for%20Accelerated%20Fenton%20Catalysis&rft.jtitle=ACS%20nano&rft.au=Fu,%20Haoyang&rft.date=2023-07-25&rft.volume=17&rft.issue=14&rft.spage=13851&rft.epage=13860&rft.pages=13851-13860&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c03610&rft_dat=%3Cproquest_cross%3E2836874616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836874616&rft_id=info:pmid/37440182&rfr_iscdi=true