Support-vector classification of low-dose nitrous oxide administration with multi-channel EEG power spectra

Support-vector machines (SVMs) can potentially improve patient monitoring during nitrous oxide anaesthesia. By elucidating the effects of low-dose nitrous oxide on the power spectra of multi-channel EEG recordings, we quantified the degree to which these effects generalise across participants. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical monitoring and computing 2024-04, Vol.38 (2), p.363-371
Hauptverfasser: Vrijdag, Xavier C. E., Hallum, Luke E., Tonks, Emma I., van Waart, Hanna, Mitchell, Simon J., Sleigh, Jamie W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 2
container_start_page 363
container_title Journal of clinical monitoring and computing
container_volume 38
creator Vrijdag, Xavier C. E.
Hallum, Luke E.
Tonks, Emma I.
van Waart, Hanna
Mitchell, Simon J.
Sleigh, Jamie W.
description Support-vector machines (SVMs) can potentially improve patient monitoring during nitrous oxide anaesthesia. By elucidating the effects of low-dose nitrous oxide on the power spectra of multi-channel EEG recordings, we quantified the degree to which these effects generalise across participants. In this single-blind, cross-over study, 32-channel EEG was recorded from 12 healthy participants exposed to 0, 20, 30 and 40% end-tidal nitrous oxide. Features of the delta-, theta-, alpha- and beta-band power were used within a 12-fold, participant-wise cross-validation framework to train and test two SVMs: (1) binary SVM classifying EEG during 0 or 40% exposure (chance = 50%); (2) multi-class SVM classifying EEG during 0, 20, 30 or 40% exposure (chance = 25%). Both the binary (accuracy 92%) and the multi-class (accuracy 52%) SVMs classified EEG recordings at rates significantly better than chance (p 
doi_str_mv 10.1007/s10877-023-01054-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2836874603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836874603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-59c975b379108e2c787f2527fa6bf9470f5cc8a8c73b460691ca0719e67513e93</originalsourceid><addsrcrecordid>eNp9kc1u3SAQhVHVqvnrC3RRIXXTDelgbA8sq-g2iRSpiyRrxOXihtQ2LuA4ffuQOE2lLrIapPnOgcMh5COHYw6AXxMHicigEgw4NDVb3pB93qBgVcvrt-UsJDIuAPfIQUq3AKCk4O_JnsC6Bs5xn_y6nKcpxMzunM0hUtublHznrck-jDR0tA8L24Xk6OhzDHOi4d7vHDW7wY8-5biCi883dJj77Jm9MePoerrZnNIpLC7SNBXzaI7Iu870yX14nofk-vvm6uSMXfw4PT_5dsGsQMisUVZhsxWoSj5XWZTYVU2FnWm3naoRusZaaaRFsa1baBW3BpAr12LDhVPikHxZfacYfs8uZT34ZF3fm9GVALqSopVYpKKgn_9Db8Mcx_I6LUBUshZS8UJVK2VjSCm6Tk_RDyb-0Rz0YxV6rUKXKvRTFXopok_P1vN2cLsXyd-_L4BYgVRW408X_939iu0DJTaVCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3032843891</pqid></control><display><type>article</type><title>Support-vector classification of low-dose nitrous oxide administration with multi-channel EEG power spectra</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vrijdag, Xavier C. E. ; Hallum, Luke E. ; Tonks, Emma I. ; van Waart, Hanna ; Mitchell, Simon J. ; Sleigh, Jamie W.</creator><creatorcontrib>Vrijdag, Xavier C. E. ; Hallum, Luke E. ; Tonks, Emma I. ; van Waart, Hanna ; Mitchell, Simon J. ; Sleigh, Jamie W.</creatorcontrib><description>Support-vector machines (SVMs) can potentially improve patient monitoring during nitrous oxide anaesthesia. By elucidating the effects of low-dose nitrous oxide on the power spectra of multi-channel EEG recordings, we quantified the degree to which these effects generalise across participants. In this single-blind, cross-over study, 32-channel EEG was recorded from 12 healthy participants exposed to 0, 20, 30 and 40% end-tidal nitrous oxide. Features of the delta-, theta-, alpha- and beta-band power were used within a 12-fold, participant-wise cross-validation framework to train and test two SVMs: (1) binary SVM classifying EEG during 0 or 40% exposure (chance = 50%); (2) multi-class SVM classifying EEG during 0, 20, 30 or 40% exposure (chance = 25%). Both the binary (accuracy 92%) and the multi-class (accuracy 52%) SVMs classified EEG recordings at rates significantly better than chance (p &lt; 0.001 and p = 0.01, respectively). To determine the relative importance of frequency band features for classification accuracy, we systematically removed features before re-training and re-testing the SVMs. This showed the relative importance of decreased delta power and the frontal region. SVM classification identified that the most important effects of nitrous oxide were found in the delta band in the frontal electrodes that was consistent between participants. Furthermore, support-vector classification of nitrous oxide dosage is a promising method that might be used to improve patient monitoring during nitrous oxide anaesthesia.</description><identifier>ISSN: 1387-1307</identifier><identifier>EISSN: 1573-2614</identifier><identifier>DOI: 10.1007/s10877-023-01054-w</identifier><identifier>PMID: 37440117</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Anesthesia ; Anesthesiology ; Classification ; Critical Care Medicine ; Exposure ; Frequencies ; Health Sciences ; Intensive ; Medicine ; Medicine &amp; Public Health ; Monitoring ; Nitrous oxide ; Original Research ; Power spectra ; Statistics for Life Sciences ; Support vector machines</subject><ispartof>Journal of clinical monitoring and computing, 2024-04, Vol.38 (2), p.363-371</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-59c975b379108e2c787f2527fa6bf9470f5cc8a8c73b460691ca0719e67513e93</cites><orcidid>0000-0002-5149-6371 ; 0000-0002-8184-1703 ; 0000-0001-5907-6083 ; 0000-0002-6931-0168 ; 0000-0002-1966-5825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10877-023-01054-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10877-023-01054-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37440117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vrijdag, Xavier C. E.</creatorcontrib><creatorcontrib>Hallum, Luke E.</creatorcontrib><creatorcontrib>Tonks, Emma I.</creatorcontrib><creatorcontrib>van Waart, Hanna</creatorcontrib><creatorcontrib>Mitchell, Simon J.</creatorcontrib><creatorcontrib>Sleigh, Jamie W.</creatorcontrib><title>Support-vector classification of low-dose nitrous oxide administration with multi-channel EEG power spectra</title><title>Journal of clinical monitoring and computing</title><addtitle>J Clin Monit Comput</addtitle><addtitle>J Clin Monit Comput</addtitle><description>Support-vector machines (SVMs) can potentially improve patient monitoring during nitrous oxide anaesthesia. By elucidating the effects of low-dose nitrous oxide on the power spectra of multi-channel EEG recordings, we quantified the degree to which these effects generalise across participants. In this single-blind, cross-over study, 32-channel EEG was recorded from 12 healthy participants exposed to 0, 20, 30 and 40% end-tidal nitrous oxide. Features of the delta-, theta-, alpha- and beta-band power were used within a 12-fold, participant-wise cross-validation framework to train and test two SVMs: (1) binary SVM classifying EEG during 0 or 40% exposure (chance = 50%); (2) multi-class SVM classifying EEG during 0, 20, 30 or 40% exposure (chance = 25%). Both the binary (accuracy 92%) and the multi-class (accuracy 52%) SVMs classified EEG recordings at rates significantly better than chance (p &lt; 0.001 and p = 0.01, respectively). To determine the relative importance of frequency band features for classification accuracy, we systematically removed features before re-training and re-testing the SVMs. This showed the relative importance of decreased delta power and the frontal region. SVM classification identified that the most important effects of nitrous oxide were found in the delta band in the frontal electrodes that was consistent between participants. Furthermore, support-vector classification of nitrous oxide dosage is a promising method that might be used to improve patient monitoring during nitrous oxide anaesthesia.</description><subject>Accuracy</subject><subject>Anesthesia</subject><subject>Anesthesiology</subject><subject>Classification</subject><subject>Critical Care Medicine</subject><subject>Exposure</subject><subject>Frequencies</subject><subject>Health Sciences</subject><subject>Intensive</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Monitoring</subject><subject>Nitrous oxide</subject><subject>Original Research</subject><subject>Power spectra</subject><subject>Statistics for Life Sciences</subject><subject>Support vector machines</subject><issn>1387-1307</issn><issn>1573-2614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1u3SAQhVHVqvnrC3RRIXXTDelgbA8sq-g2iRSpiyRrxOXihtQ2LuA4ffuQOE2lLrIapPnOgcMh5COHYw6AXxMHicigEgw4NDVb3pB93qBgVcvrt-UsJDIuAPfIQUq3AKCk4O_JnsC6Bs5xn_y6nKcpxMzunM0hUtublHznrck-jDR0tA8L24Xk6OhzDHOi4d7vHDW7wY8-5biCi883dJj77Jm9MePoerrZnNIpLC7SNBXzaI7Iu870yX14nofk-vvm6uSMXfw4PT_5dsGsQMisUVZhsxWoSj5XWZTYVU2FnWm3naoRusZaaaRFsa1baBW3BpAr12LDhVPikHxZfacYfs8uZT34ZF3fm9GVALqSopVYpKKgn_9Db8Mcx_I6LUBUshZS8UJVK2VjSCm6Tk_RDyb-0Rz0YxV6rUKXKvRTFXopok_P1vN2cLsXyd-_L4BYgVRW408X_939iu0DJTaVCw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Vrijdag, Xavier C. E.</creator><creator>Hallum, Luke E.</creator><creator>Tonks, Emma I.</creator><creator>van Waart, Hanna</creator><creator>Mitchell, Simon J.</creator><creator>Sleigh, Jamie W.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5149-6371</orcidid><orcidid>https://orcid.org/0000-0002-8184-1703</orcidid><orcidid>https://orcid.org/0000-0001-5907-6083</orcidid><orcidid>https://orcid.org/0000-0002-6931-0168</orcidid><orcidid>https://orcid.org/0000-0002-1966-5825</orcidid></search><sort><creationdate>20240401</creationdate><title>Support-vector classification of low-dose nitrous oxide administration with multi-channel EEG power spectra</title><author>Vrijdag, Xavier C. E. ; Hallum, Luke E. ; Tonks, Emma I. ; van Waart, Hanna ; Mitchell, Simon J. ; Sleigh, Jamie W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-59c975b379108e2c787f2527fa6bf9470f5cc8a8c73b460691ca0719e67513e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Anesthesia</topic><topic>Anesthesiology</topic><topic>Classification</topic><topic>Critical Care Medicine</topic><topic>Exposure</topic><topic>Frequencies</topic><topic>Health Sciences</topic><topic>Intensive</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Monitoring</topic><topic>Nitrous oxide</topic><topic>Original Research</topic><topic>Power spectra</topic><topic>Statistics for Life Sciences</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vrijdag, Xavier C. E.</creatorcontrib><creatorcontrib>Hallum, Luke E.</creatorcontrib><creatorcontrib>Tonks, Emma I.</creatorcontrib><creatorcontrib>van Waart, Hanna</creatorcontrib><creatorcontrib>Mitchell, Simon J.</creatorcontrib><creatorcontrib>Sleigh, Jamie W.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical monitoring and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vrijdag, Xavier C. E.</au><au>Hallum, Luke E.</au><au>Tonks, Emma I.</au><au>van Waart, Hanna</au><au>Mitchell, Simon J.</au><au>Sleigh, Jamie W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Support-vector classification of low-dose nitrous oxide administration with multi-channel EEG power spectra</atitle><jtitle>Journal of clinical monitoring and computing</jtitle><stitle>J Clin Monit Comput</stitle><addtitle>J Clin Monit Comput</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>38</volume><issue>2</issue><spage>363</spage><epage>371</epage><pages>363-371</pages><issn>1387-1307</issn><eissn>1573-2614</eissn><abstract>Support-vector machines (SVMs) can potentially improve patient monitoring during nitrous oxide anaesthesia. By elucidating the effects of low-dose nitrous oxide on the power spectra of multi-channel EEG recordings, we quantified the degree to which these effects generalise across participants. In this single-blind, cross-over study, 32-channel EEG was recorded from 12 healthy participants exposed to 0, 20, 30 and 40% end-tidal nitrous oxide. Features of the delta-, theta-, alpha- and beta-band power were used within a 12-fold, participant-wise cross-validation framework to train and test two SVMs: (1) binary SVM classifying EEG during 0 or 40% exposure (chance = 50%); (2) multi-class SVM classifying EEG during 0, 20, 30 or 40% exposure (chance = 25%). Both the binary (accuracy 92%) and the multi-class (accuracy 52%) SVMs classified EEG recordings at rates significantly better than chance (p &lt; 0.001 and p = 0.01, respectively). To determine the relative importance of frequency band features for classification accuracy, we systematically removed features before re-training and re-testing the SVMs. This showed the relative importance of decreased delta power and the frontal region. SVM classification identified that the most important effects of nitrous oxide were found in the delta band in the frontal electrodes that was consistent between participants. Furthermore, support-vector classification of nitrous oxide dosage is a promising method that might be used to improve patient monitoring during nitrous oxide anaesthesia.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37440117</pmid><doi>10.1007/s10877-023-01054-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5149-6371</orcidid><orcidid>https://orcid.org/0000-0002-8184-1703</orcidid><orcidid>https://orcid.org/0000-0001-5907-6083</orcidid><orcidid>https://orcid.org/0000-0002-6931-0168</orcidid><orcidid>https://orcid.org/0000-0002-1966-5825</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1387-1307
ispartof Journal of clinical monitoring and computing, 2024-04, Vol.38 (2), p.363-371
issn 1387-1307
1573-2614
language eng
recordid cdi_proquest_miscellaneous_2836874603
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Anesthesia
Anesthesiology
Classification
Critical Care Medicine
Exposure
Frequencies
Health Sciences
Intensive
Medicine
Medicine & Public Health
Monitoring
Nitrous oxide
Original Research
Power spectra
Statistics for Life Sciences
Support vector machines
title Support-vector classification of low-dose nitrous oxide administration with multi-channel EEG power spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Support-vector%20classification%20of%20low-dose%20nitrous%20oxide%20administration%20with%20multi-channel%20EEG%20power%20spectra&rft.jtitle=Journal%20of%20clinical%20monitoring%20and%20computing&rft.au=Vrijdag,%20Xavier%20C.%20E.&rft.date=2024-04-01&rft.volume=38&rft.issue=2&rft.spage=363&rft.epage=371&rft.pages=363-371&rft.issn=1387-1307&rft.eissn=1573-2614&rft_id=info:doi/10.1007/s10877-023-01054-w&rft_dat=%3Cproquest_cross%3E2836874603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3032843891&rft_id=info:pmid/37440117&rfr_iscdi=true