Urban sprawl: metrics, dynamics and modelling using GIS

Urban sprawl refers to the extent of urbanisation, which is a global phenomenon mainly driven by population growth and large scale migration. In developing countries like India, where the population is over one billion, one-sixth of the world’s population, urban sprawl is taking its toll on the natu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied earth observation and geoinformation 2004-02, Vol.5 (1), p.29-39
Hauptverfasser: Sudhira, H.S., Ramachandra, T.V., Jagadish, K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 29
container_title International journal of applied earth observation and geoinformation
container_volume 5
creator Sudhira, H.S.
Ramachandra, T.V.
Jagadish, K.S.
description Urban sprawl refers to the extent of urbanisation, which is a global phenomenon mainly driven by population growth and large scale migration. In developing countries like India, where the population is over one billion, one-sixth of the world’s population, urban sprawl is taking its toll on the natural resources at an alarming pace. Urban planners require information related to the rate of growth, pattern and extent of sprawl to provide basic amenities such as water, sanitation, electricity, etc. In the absence of such information, most of the sprawl areas lack basic infrastructure facilities. Pattern and extent of sprawl could be modelled with the help of spatial and temporal data. GIS and remote sensing data along with collateral data help in analysing the growth, pattern and extent of sprawl. With the spatial and temporal analyses along with modelling it was possible to identify the pattern of sprawl and subsequently predict the nature of future sprawl. This paper brings out the extent of sprawl taking place over a period of nearly three decades using GIS and Remote Sensing. The study also attempts to describe some of the landscape metrics required for quantifying sprawl. For understanding and modelling this dynamic phenomenon, prominent causative factors are considered.
doi_str_mv 10.1016/j.jag.2003.08.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28367182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303243403000230</els_id><sourcerecordid>19701425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-7dc6e342756ebbb6f432774dfbd4e6433546093dc639ee01a83e78223c1fad313</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwA7jlxIkEPxLbgROqoFSqxAEqcbMce1M5yqPYKaj_HkflDJfdOXyzmh2ErgnOCCb8rskavc0oxizDMsOYnqAZkYKmkvKP06gLXqYyZ_QcXYTQYEyE4HKGxMZXuk_Czuvv9j7pYPTOhNvEHnrdRZXo3ibdYKFtXb9N9mGay9XbJTqrdRvg6nfP0eb56X3xkq5fl6vF4zo1VNAxFdZwYDkVBYeqqngdEwiR27qyOfCcsSLnuGSRYiUAJloyEJJSZkitLSNsjm6Od3d--NxDGFXngolpdA_DPigqGRdE0n9BUgpMclpEkBxB44cQPNRq512n_UERrKYuVaNil2rqUmGpYpfR83D0QHz1y4FXwTjoDVjnwYzKDu4P9w_v83qt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19701425</pqid></control><display><type>article</type><title>Urban sprawl: metrics, dynamics and modelling using GIS</title><source>Elsevier ScienceDirect Journals</source><creator>Sudhira, H.S. ; Ramachandra, T.V. ; Jagadish, K.S.</creator><creatorcontrib>Sudhira, H.S. ; Ramachandra, T.V. ; Jagadish, K.S.</creatorcontrib><description>Urban sprawl refers to the extent of urbanisation, which is a global phenomenon mainly driven by population growth and large scale migration. In developing countries like India, where the population is over one billion, one-sixth of the world’s population, urban sprawl is taking its toll on the natural resources at an alarming pace. Urban planners require information related to the rate of growth, pattern and extent of sprawl to provide basic amenities such as water, sanitation, electricity, etc. In the absence of such information, most of the sprawl areas lack basic infrastructure facilities. Pattern and extent of sprawl could be modelled with the help of spatial and temporal data. GIS and remote sensing data along with collateral data help in analysing the growth, pattern and extent of sprawl. With the spatial and temporal analyses along with modelling it was possible to identify the pattern of sprawl and subsequently predict the nature of future sprawl. This paper brings out the extent of sprawl taking place over a period of nearly three decades using GIS and Remote Sensing. The study also attempts to describe some of the landscape metrics required for quantifying sprawl. For understanding and modelling this dynamic phenomenon, prominent causative factors are considered.</description><identifier>ISSN: 1569-8432</identifier><identifier>EISSN: 1872-826X</identifier><identifier>DOI: 10.1016/j.jag.2003.08.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>GIS ; Modelling ; Remote sensing ; Spatial and temporal analyses ; Urban dynamics ; Urban sprawl ; Urbanisation</subject><ispartof>International journal of applied earth observation and geoinformation, 2004-02, Vol.5 (1), p.29-39</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-7dc6e342756ebbb6f432774dfbd4e6433546093dc639ee01a83e78223c1fad313</citedby><cites>FETCH-LOGICAL-c272t-7dc6e342756ebbb6f432774dfbd4e6433546093dc639ee01a83e78223c1fad313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0303243403000230$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sudhira, H.S.</creatorcontrib><creatorcontrib>Ramachandra, T.V.</creatorcontrib><creatorcontrib>Jagadish, K.S.</creatorcontrib><title>Urban sprawl: metrics, dynamics and modelling using GIS</title><title>International journal of applied earth observation and geoinformation</title><description>Urban sprawl refers to the extent of urbanisation, which is a global phenomenon mainly driven by population growth and large scale migration. In developing countries like India, where the population is over one billion, one-sixth of the world’s population, urban sprawl is taking its toll on the natural resources at an alarming pace. Urban planners require information related to the rate of growth, pattern and extent of sprawl to provide basic amenities such as water, sanitation, electricity, etc. In the absence of such information, most of the sprawl areas lack basic infrastructure facilities. Pattern and extent of sprawl could be modelled with the help of spatial and temporal data. GIS and remote sensing data along with collateral data help in analysing the growth, pattern and extent of sprawl. With the spatial and temporal analyses along with modelling it was possible to identify the pattern of sprawl and subsequently predict the nature of future sprawl. This paper brings out the extent of sprawl taking place over a period of nearly three decades using GIS and Remote Sensing. The study also attempts to describe some of the landscape metrics required for quantifying sprawl. For understanding and modelling this dynamic phenomenon, prominent causative factors are considered.</description><subject>GIS</subject><subject>Modelling</subject><subject>Remote sensing</subject><subject>Spatial and temporal analyses</subject><subject>Urban dynamics</subject><subject>Urban sprawl</subject><subject>Urbanisation</subject><issn>1569-8432</issn><issn>1872-826X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwA7jlxIkEPxLbgROqoFSqxAEqcbMce1M5yqPYKaj_HkflDJfdOXyzmh2ErgnOCCb8rskavc0oxizDMsOYnqAZkYKmkvKP06gLXqYyZ_QcXYTQYEyE4HKGxMZXuk_Czuvv9j7pYPTOhNvEHnrdRZXo3ibdYKFtXb9N9mGay9XbJTqrdRvg6nfP0eb56X3xkq5fl6vF4zo1VNAxFdZwYDkVBYeqqngdEwiR27qyOfCcsSLnuGSRYiUAJloyEJJSZkitLSNsjm6Od3d--NxDGFXngolpdA_DPigqGRdE0n9BUgpMclpEkBxB44cQPNRq512n_UERrKYuVaNil2rqUmGpYpfR83D0QHz1y4FXwTjoDVjnwYzKDu4P9w_v83qt</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Sudhira, H.S.</creator><creator>Ramachandra, T.V.</creator><creator>Jagadish, K.S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040201</creationdate><title>Urban sprawl: metrics, dynamics and modelling using GIS</title><author>Sudhira, H.S. ; Ramachandra, T.V. ; Jagadish, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-7dc6e342756ebbb6f432774dfbd4e6433546093dc639ee01a83e78223c1fad313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>GIS</topic><topic>Modelling</topic><topic>Remote sensing</topic><topic>Spatial and temporal analyses</topic><topic>Urban dynamics</topic><topic>Urban sprawl</topic><topic>Urbanisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudhira, H.S.</creatorcontrib><creatorcontrib>Ramachandra, T.V.</creatorcontrib><creatorcontrib>Jagadish, K.S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of applied earth observation and geoinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudhira, H.S.</au><au>Ramachandra, T.V.</au><au>Jagadish, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban sprawl: metrics, dynamics and modelling using GIS</atitle><jtitle>International journal of applied earth observation and geoinformation</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>5</volume><issue>1</issue><spage>29</spage><epage>39</epage><pages>29-39</pages><issn>1569-8432</issn><eissn>1872-826X</eissn><abstract>Urban sprawl refers to the extent of urbanisation, which is a global phenomenon mainly driven by population growth and large scale migration. In developing countries like India, where the population is over one billion, one-sixth of the world’s population, urban sprawl is taking its toll on the natural resources at an alarming pace. Urban planners require information related to the rate of growth, pattern and extent of sprawl to provide basic amenities such as water, sanitation, electricity, etc. In the absence of such information, most of the sprawl areas lack basic infrastructure facilities. Pattern and extent of sprawl could be modelled with the help of spatial and temporal data. GIS and remote sensing data along with collateral data help in analysing the growth, pattern and extent of sprawl. With the spatial and temporal analyses along with modelling it was possible to identify the pattern of sprawl and subsequently predict the nature of future sprawl. This paper brings out the extent of sprawl taking place over a period of nearly three decades using GIS and Remote Sensing. The study also attempts to describe some of the landscape metrics required for quantifying sprawl. For understanding and modelling this dynamic phenomenon, prominent causative factors are considered.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jag.2003.08.002</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8432
ispartof International journal of applied earth observation and geoinformation, 2004-02, Vol.5 (1), p.29-39
issn 1569-8432
1872-826X
language eng
recordid cdi_proquest_miscellaneous_28367182
source Elsevier ScienceDirect Journals
subjects GIS
Modelling
Remote sensing
Spatial and temporal analyses
Urban dynamics
Urban sprawl
Urbanisation
title Urban sprawl: metrics, dynamics and modelling using GIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20sprawl:%20metrics,%20dynamics%20and%20modelling%20using%20GIS&rft.jtitle=International%20journal%20of%20applied%20earth%20observation%20and%20geoinformation&rft.au=Sudhira,%20H.S.&rft.date=2004-02-01&rft.volume=5&rft.issue=1&rft.spage=29&rft.epage=39&rft.pages=29-39&rft.issn=1569-8432&rft.eissn=1872-826X&rft_id=info:doi/10.1016/j.jag.2003.08.002&rft_dat=%3Cproquest_cross%3E19701425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19701425&rft_id=info:pmid/&rft_els_id=S0303243403000230&rfr_iscdi=true