Rough set approach to case-based reasoning application

The case-based reasoning becomes a novel paradigm that solves a new problem by remembering a previous similar situation and by reusing information and knowledge of that situation. In general, the traditional representation of cases is too simple and is not well structured to support the decision-mak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2004-04, Vol.26 (3), p.369-385
Hauptverfasser: Huang, Chun-Che, Tseng, Tzu-Liang (Bill)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 3
container_start_page 369
container_title Expert systems with applications
container_volume 26
creator Huang, Chun-Che
Tseng, Tzu-Liang (Bill)
description The case-based reasoning becomes a novel paradigm that solves a new problem by remembering a previous similar situation and by reusing information and knowledge of that situation. In general, the traditional representation of cases is too simple and is not well structured to support the decision-making in organization. Furthermore, the similarity testing of case-based reasoning is very time-consuming. Therefore, a novel approach to represent the knowledge of cases in an explicit manner and to search similar cases in an efficient way is desired. An Extensible Markup Language-based representation formulated with the Zachman framework is proposed in this paper. Through a rough set based approach, case-based reasoning becomes more efficient and complexity of computation of the similarity testing is significantly reduced.
doi_str_mv 10.1016/j.eswa.2003.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28366651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417403001684</els_id><sourcerecordid>28366651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-10bda690e615b9be1847105d2460a5db656bc58fe10674d66faef272b78d69733</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU89eWud9GPSgBdZ_IIFQfQc0mS6m6XbrEmr-O9tWc9eZi7v8zLzMHbNIePA8XaXUfzWWQ5QZCAzgPqELXgtihSFLE7ZAmQl0pKL8pxdxLgD4AJALBi--XGzTSINiT4cgtdmmww-MTpS2kzDJoF09L3rN3Ogc0YPzveX7KzVXaSrv71kH48P76vndP369LK6X6emyOWQcmisRgmEvGpkQ7wuBYfK5iWCrmyDFTamqlvigKK0iK2mNhd5I2qLUhTFkt0ce6fTPkeKg9q7aKjrdE9-jCqvC0Ss-BTMj0ETfIyBWnUIbq_Dj-KgZkVqp2ZFalakQKpJ0QTdHSGaXvhyFFQ0jnpD1gUyg7Le_Yf_ApxrbuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28366651</pqid></control><display><type>article</type><title>Rough set approach to case-based reasoning application</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Chun-Che ; Tseng, Tzu-Liang (Bill)</creator><creatorcontrib>Huang, Chun-Che ; Tseng, Tzu-Liang (Bill)</creatorcontrib><description>The case-based reasoning becomes a novel paradigm that solves a new problem by remembering a previous similar situation and by reusing information and knowledge of that situation. In general, the traditional representation of cases is too simple and is not well structured to support the decision-making in organization. Furthermore, the similarity testing of case-based reasoning is very time-consuming. Therefore, a novel approach to represent the knowledge of cases in an explicit manner and to search similar cases in an efficient way is desired. An Extensible Markup Language-based representation formulated with the Zachman framework is proposed in this paper. Through a rough set based approach, case-based reasoning becomes more efficient and complexity of computation of the similarity testing is significantly reduced.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2003.09.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Case representation ; Case-based reasoning ; Knowledge management ; Rough set</subject><ispartof>Expert systems with applications, 2004-04, Vol.26 (3), p.369-385</ispartof><rights>2003 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-10bda690e615b9be1847105d2460a5db656bc58fe10674d66faef272b78d69733</citedby><cites>FETCH-LOGICAL-c329t-10bda690e615b9be1847105d2460a5db656bc58fe10674d66faef272b78d69733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2003.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Huang, Chun-Che</creatorcontrib><creatorcontrib>Tseng, Tzu-Liang (Bill)</creatorcontrib><title>Rough set approach to case-based reasoning application</title><title>Expert systems with applications</title><description>The case-based reasoning becomes a novel paradigm that solves a new problem by remembering a previous similar situation and by reusing information and knowledge of that situation. In general, the traditional representation of cases is too simple and is not well structured to support the decision-making in organization. Furthermore, the similarity testing of case-based reasoning is very time-consuming. Therefore, a novel approach to represent the knowledge of cases in an explicit manner and to search similar cases in an efficient way is desired. An Extensible Markup Language-based representation formulated with the Zachman framework is proposed in this paper. Through a rough set based approach, case-based reasoning becomes more efficient and complexity of computation of the similarity testing is significantly reduced.</description><subject>Case representation</subject><subject>Case-based reasoning</subject><subject>Knowledge management</subject><subject>Rough set</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU89eWud9GPSgBdZ_IIFQfQc0mS6m6XbrEmr-O9tWc9eZi7v8zLzMHbNIePA8XaXUfzWWQ5QZCAzgPqELXgtihSFLE7ZAmQl0pKL8pxdxLgD4AJALBi--XGzTSINiT4cgtdmmww-MTpS2kzDJoF09L3rN3Ogc0YPzveX7KzVXaSrv71kH48P76vndP369LK6X6emyOWQcmisRgmEvGpkQ7wuBYfK5iWCrmyDFTamqlvigKK0iK2mNhd5I2qLUhTFkt0ce6fTPkeKg9q7aKjrdE9-jCqvC0Ss-BTMj0ETfIyBWnUIbq_Dj-KgZkVqp2ZFalakQKpJ0QTdHSGaXvhyFFQ0jnpD1gUyg7Le_Yf_ApxrbuE</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Huang, Chun-Che</creator><creator>Tseng, Tzu-Liang (Bill)</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040401</creationdate><title>Rough set approach to case-based reasoning application</title><author>Huang, Chun-Che ; Tseng, Tzu-Liang (Bill)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-10bda690e615b9be1847105d2460a5db656bc58fe10674d66faef272b78d69733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Case representation</topic><topic>Case-based reasoning</topic><topic>Knowledge management</topic><topic>Rough set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chun-Che</creatorcontrib><creatorcontrib>Tseng, Tzu-Liang (Bill)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chun-Che</au><au>Tseng, Tzu-Liang (Bill)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rough set approach to case-based reasoning application</atitle><jtitle>Expert systems with applications</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>26</volume><issue>3</issue><spage>369</spage><epage>385</epage><pages>369-385</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>The case-based reasoning becomes a novel paradigm that solves a new problem by remembering a previous similar situation and by reusing information and knowledge of that situation. In general, the traditional representation of cases is too simple and is not well structured to support the decision-making in organization. Furthermore, the similarity testing of case-based reasoning is very time-consuming. Therefore, a novel approach to represent the knowledge of cases in an explicit manner and to search similar cases in an efficient way is desired. An Extensible Markup Language-based representation formulated with the Zachman framework is proposed in this paper. Through a rough set based approach, case-based reasoning becomes more efficient and complexity of computation of the similarity testing is significantly reduced.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2003.09.008</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2004-04, Vol.26 (3), p.369-385
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_28366651
source Elsevier ScienceDirect Journals Complete
subjects Case representation
Case-based reasoning
Knowledge management
Rough set
title Rough set approach to case-based reasoning application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rough%20set%20approach%20to%20case-based%20reasoning%20application&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Huang,%20Chun-Che&rft.date=2004-04-01&rft.volume=26&rft.issue=3&rft.spage=369&rft.epage=385&rft.pages=369-385&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2003.09.008&rft_dat=%3Cproquest_cross%3E28366651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28366651&rft_id=info:pmid/&rft_els_id=S0957417403001684&rfr_iscdi=true