Micro heat pipes in low temperature cofire ceramic (LTCC) substrates

With projected power densities above 100 W/cm/sup 2/ for devices, new methods for thermal management from the heat generation at the die to heat removal to the ambient must be addressed. By integrating micro heat pipes directly within the ceramic substrate, effective thermal conductivity for spreadi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components and packaging technologies 2003-03, Vol.26 (1), p.110-115
Hauptverfasser: Jones, W.K., Yanqing Liu, Mingcong Gao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 1
container_start_page 110
container_title IEEE transactions on components and packaging technologies
container_volume 26
creator Jones, W.K.
Yanqing Liu
Mingcong Gao
description With projected power densities above 100 W/cm/sup 2/ for devices, new methods for thermal management from the heat generation at the die to heat removal to the ambient must be addressed. By integrating micro heat pipes directly within the ceramic substrate, effective thermal conductivity for spreading heat in both radial and axial directions was achieved. New materials and processes were developed to fabricate the unique components required to handle high thermal loads. Enhanced thermal vias to minimize the thermal impedance through the ceramic in the evaporator and condenser sections were developed, increasing the effective thermal conductivity from 2.63 to near 250 W/m-/spl deg/C. The use of an organic insert fabricated into the desired complex shape using rapid prototyping methods, coupled with the viscoelastic flow of the low temperature cofire ceramic (LTCC) during lamination, allowed complex shapes to be developed while ensuring uniform green tape density during lamination prior to tape firing. Large cavities, three-dimensional fine structures and porous wicks for capillary 3-D flow have been utilized to fabricate the heat pipes. Heat pipes and spreaders, utilizing water as the working fluid, have been demonstrated operating with power densities in excess of 300 W/cm/sup 2/.
doi_str_mv 10.1109/TCAPT.2003.811475
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28364249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1202909</ieee_id><sourcerecordid>28364249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-cfc4ae7c3331cd84dc43eb95cf37d8d8c532ab84c598ad1e031b861841e3ca9f3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AiCq6rH0C8FA8-Dl0zeWyS41KfsKKHeg5pOsUuu9vatIjf3tQKggc9zQR-M4T5R9ExkBkA0VdZunjOZpQQNlMAXIqdaAJCyERrSXeHnkLCGIP96MD7FSHAFdeT6Pqxcm0dv6Lt4qZq0MfVNl7X73GHmwZb2_Utxq4uq6GE96Zy8cUyS9PL2Pe574JAfxjtlXbt8ei7TqOX25ssvU-WT3cP6WKZOA6iS1zpuEXphm-4QvHCcYa5Fq5kslCFcoJRmyvuhFa2ACQMcjUHxQGZs7pk0-h83Nu09VuPvjObyjtcr-0W694bTUBSKpkK8uxPSTXj87nU_0MltYBw1v8hm3PKh42nv-Cq7tttuItRKgiqlAgIRhSO732LpWnaamPbDwPEDIGar0DNEKgZAw0zJ-NMhYg_nhKqiWafcEqakw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884242885</pqid></control><display><type>article</type><title>Micro heat pipes in low temperature cofire ceramic (LTCC) substrates</title><source>IEEE Electronic Library (IEL)</source><creator>Jones, W.K. ; Yanqing Liu ; Mingcong Gao</creator><creatorcontrib>Jones, W.K. ; Yanqing Liu ; Mingcong Gao</creatorcontrib><description>With projected power densities above 100 W/cm/sup 2/ for devices, new methods for thermal management from the heat generation at the die to heat removal to the ambient must be addressed. By integrating micro heat pipes directly within the ceramic substrate, effective thermal conductivity for spreading heat in both radial and axial directions was achieved. New materials and processes were developed to fabricate the unique components required to handle high thermal loads. Enhanced thermal vias to minimize the thermal impedance through the ceramic in the evaporator and condenser sections were developed, increasing the effective thermal conductivity from 2.63 to near 250 W/m-/spl deg/C. The use of an organic insert fabricated into the desired complex shape using rapid prototyping methods, coupled with the viscoelastic flow of the low temperature cofire ceramic (LTCC) during lamination, allowed complex shapes to be developed while ensuring uniform green tape density during lamination prior to tape firing. Large cavities, three-dimensional fine structures and porous wicks for capillary 3-D flow have been utilized to fabricate the heat pipes. Heat pipes and spreaders, utilizing water as the working fluid, have been demonstrated operating with power densities in excess of 300 W/cm/sup 2/.</description><identifier>ISSN: 1521-3331</identifier><identifier>EISSN: 1557-9972</identifier><identifier>DOI: 10.1109/TCAPT.2003.811475</identifier><identifier>CODEN: ITCPFB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ceramics ; Density ; Devices ; Energy management ; Firing ; Heat pipes ; Heat transfer ; Lamination ; Power generation ; Project management ; Rapid thermal processing ; Shape ; Temperature ; Thermal conductivity ; Thermal management ; Wicks</subject><ispartof>IEEE transactions on components and packaging technologies, 2003-03, Vol.26 (1), p.110-115</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-cfc4ae7c3331cd84dc43eb95cf37d8d8c532ab84c598ad1e031b861841e3ca9f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1202909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1202909$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jones, W.K.</creatorcontrib><creatorcontrib>Yanqing Liu</creatorcontrib><creatorcontrib>Mingcong Gao</creatorcontrib><title>Micro heat pipes in low temperature cofire ceramic (LTCC) substrates</title><title>IEEE transactions on components and packaging technologies</title><addtitle>TCAPT</addtitle><description>With projected power densities above 100 W/cm/sup 2/ for devices, new methods for thermal management from the heat generation at the die to heat removal to the ambient must be addressed. By integrating micro heat pipes directly within the ceramic substrate, effective thermal conductivity for spreading heat in both radial and axial directions was achieved. New materials and processes were developed to fabricate the unique components required to handle high thermal loads. Enhanced thermal vias to minimize the thermal impedance through the ceramic in the evaporator and condenser sections were developed, increasing the effective thermal conductivity from 2.63 to near 250 W/m-/spl deg/C. The use of an organic insert fabricated into the desired complex shape using rapid prototyping methods, coupled with the viscoelastic flow of the low temperature cofire ceramic (LTCC) during lamination, allowed complex shapes to be developed while ensuring uniform green tape density during lamination prior to tape firing. Large cavities, three-dimensional fine structures and porous wicks for capillary 3-D flow have been utilized to fabricate the heat pipes. Heat pipes and spreaders, utilizing water as the working fluid, have been demonstrated operating with power densities in excess of 300 W/cm/sup 2/.</description><subject>Ceramics</subject><subject>Density</subject><subject>Devices</subject><subject>Energy management</subject><subject>Firing</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Lamination</subject><subject>Power generation</subject><subject>Project management</subject><subject>Rapid thermal processing</subject><subject>Shape</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Wicks</subject><issn>1521-3331</issn><issn>1557-9972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLxDAQB_AiCq6rH0C8FA8-Dl0zeWyS41KfsKKHeg5pOsUuu9vatIjf3tQKggc9zQR-M4T5R9ExkBkA0VdZunjOZpQQNlMAXIqdaAJCyERrSXeHnkLCGIP96MD7FSHAFdeT6Pqxcm0dv6Lt4qZq0MfVNl7X73GHmwZb2_Utxq4uq6GE96Zy8cUyS9PL2Pe574JAfxjtlXbt8ei7TqOX25ssvU-WT3cP6WKZOA6iS1zpuEXphm-4QvHCcYa5Fq5kslCFcoJRmyvuhFa2ACQMcjUHxQGZs7pk0-h83Nu09VuPvjObyjtcr-0W694bTUBSKpkK8uxPSTXj87nU_0MltYBw1v8hm3PKh42nv-Cq7tttuItRKgiqlAgIRhSO732LpWnaamPbDwPEDIGar0DNEKgZAw0zJ-NMhYg_nhKqiWafcEqakw</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Jones, W.K.</creator><creator>Yanqing Liu</creator><creator>Mingcong Gao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20030301</creationdate><title>Micro heat pipes in low temperature cofire ceramic (LTCC) substrates</title><author>Jones, W.K. ; Yanqing Liu ; Mingcong Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-cfc4ae7c3331cd84dc43eb95cf37d8d8c532ab84c598ad1e031b861841e3ca9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Ceramics</topic><topic>Density</topic><topic>Devices</topic><topic>Energy management</topic><topic>Firing</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Lamination</topic><topic>Power generation</topic><topic>Project management</topic><topic>Rapid thermal processing</topic><topic>Shape</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Wicks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, W.K.</creatorcontrib><creatorcontrib>Yanqing Liu</creatorcontrib><creatorcontrib>Mingcong Gao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on components and packaging technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jones, W.K.</au><au>Yanqing Liu</au><au>Mingcong Gao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro heat pipes in low temperature cofire ceramic (LTCC) substrates</atitle><jtitle>IEEE transactions on components and packaging technologies</jtitle><stitle>TCAPT</stitle><date>2003-03-01</date><risdate>2003</risdate><volume>26</volume><issue>1</issue><spage>110</spage><epage>115</epage><pages>110-115</pages><issn>1521-3331</issn><eissn>1557-9972</eissn><coden>ITCPFB</coden><abstract>With projected power densities above 100 W/cm/sup 2/ for devices, new methods for thermal management from the heat generation at the die to heat removal to the ambient must be addressed. By integrating micro heat pipes directly within the ceramic substrate, effective thermal conductivity for spreading heat in both radial and axial directions was achieved. New materials and processes were developed to fabricate the unique components required to handle high thermal loads. Enhanced thermal vias to minimize the thermal impedance through the ceramic in the evaporator and condenser sections were developed, increasing the effective thermal conductivity from 2.63 to near 250 W/m-/spl deg/C. The use of an organic insert fabricated into the desired complex shape using rapid prototyping methods, coupled with the viscoelastic flow of the low temperature cofire ceramic (LTCC) during lamination, allowed complex shapes to be developed while ensuring uniform green tape density during lamination prior to tape firing. Large cavities, three-dimensional fine structures and porous wicks for capillary 3-D flow have been utilized to fabricate the heat pipes. Heat pipes and spreaders, utilizing water as the working fluid, have been demonstrated operating with power densities in excess of 300 W/cm/sup 2/.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAPT.2003.811475</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-3331
ispartof IEEE transactions on components and packaging technologies, 2003-03, Vol.26 (1), p.110-115
issn 1521-3331
1557-9972
language eng
recordid cdi_proquest_miscellaneous_28364249
source IEEE Electronic Library (IEL)
subjects Ceramics
Density
Devices
Energy management
Firing
Heat pipes
Heat transfer
Lamination
Power generation
Project management
Rapid thermal processing
Shape
Temperature
Thermal conductivity
Thermal management
Wicks
title Micro heat pipes in low temperature cofire ceramic (LTCC) substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%20heat%20pipes%20in%20low%20temperature%20cofire%20ceramic%20(LTCC)%20substrates&rft.jtitle=IEEE%20transactions%20on%20components%20and%20packaging%20technologies&rft.au=Jones,%20W.K.&rft.date=2003-03-01&rft.volume=26&rft.issue=1&rft.spage=110&rft.epage=115&rft.pages=110-115&rft.issn=1521-3331&rft.eissn=1557-9972&rft.coden=ITCPFB&rft_id=info:doi/10.1109/TCAPT.2003.811475&rft_dat=%3Cproquest_RIE%3E28364249%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884242885&rft_id=info:pmid/&rft_ieee_id=1202909&rfr_iscdi=true