Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México
Arsenic retention by carbonate-rich aquifer material at Zimapán, México, was studied to gain insight into the processes controlling arsenic mobility in natural systems. Batch experiments showed that retention of soluble As (V) on carbonate-rich aquifer material was 35.3-90% in the pH range of 7-9 fo...
Gespeichert in:
Veröffentlicht in: | Archives of environmental contamination and toxicology 2004-07, Vol.47 (1), p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Archives of environmental contamination and toxicology |
container_volume | 47 |
creator | ROMERO, F. M ARMIENTA, M. A CARRILLO-CHAVEZ, A |
description | Arsenic retention by carbonate-rich aquifer material at Zimapán, México, was studied to gain insight into the processes controlling arsenic mobility in natural systems. Batch experiments showed that retention of soluble As (V) on carbonate-rich aquifer material was 35.3-90% in the pH range of 7-9 found in Zimapán natural water. Chemical and mineralogical compositions, point of zero charge (PZC), and experimental arsenic retention at various pH of three composite samples of limestone (M1, M2, M3) showed that sorption (adsorption and coprecipitation) may be one of the main processes controlling arsenic mobility in the Zimapán As-polluted aquifer. The PZC values approximately corresponded to the PZC reported for the main minerals present in each sample: hydrous ferric oxides (M1), calcite (M2), and the range from hydrous ferric oxides and calcite (M3). The chemical and mineralogical compositions of each sample explain the obtained PZC values. Experimental and modeled arsenic retention at various pH values on sample M1 corresponded to reported arsenic adsorption onto hydrous ferric oxides. Coprecipitacion of complex Ca arsenates or arsenic adsorption onto calcite or clay minerals could be the main processes of arsenic retention on samples M2 and M3. Groundwater flow through the granular, carbonate-rich, shallow aquifer may decrease the water As content as a result of these interactions. A remediation method based on the promotion of polluted water flow into the shallow aquifer could be developed from these results. |
doi_str_mv | 10.1007/s00244-004-3009-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_28363052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19430977</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-768499ba48806e6a399dbdd7084d1fbf396f46bc12702ed418be79491308281f3</originalsourceid><addsrcrecordid>eNqFkE9rFTEUxYMo9vn0A7iRIOiq0Zu5902SZSn-g5ZudONmSDIZTZmZvCYz0Pdxuuzn6Bcz4BPEjasLh9853HMYeynhnQRQ7wtAQyQASCCAEfIR20jCRoACfMw2VQNBSPKEPSvlGkA2WtNTdiJ3SK1SuGE_znIJc_S8pLxfYpq5O3Bvs0uzXYLI0f_k9maNQ8h8qkqOdjzllvs0LzmNvBrsMWFKLo5xOXC78O9xsvuHu_mUXz7c30afnrMngx1LeHG8W_bt44ev55_FxdWnL-dnF8IimUWoVpMxzpLW0IbWojG963sFmno5uAFNO1DrvGwUNKEnqV1QhoxE0I2WA27Z29-5-5xu1lCWborFh3G0c0hr6RqNLcKu-S8oDSGYutGWvf4HvE5rnmuJTqHc1U9JV-jVEVrdFPpun-sA-dD9GboCb46ALd6OQ7azj-UvTqOqzfEX2JuM-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>731548848</pqid></control><display><type>article</type><title>Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><creator>ROMERO, F. M ; ARMIENTA, M. A ; CARRILLO-CHAVEZ, A</creator><creatorcontrib>ROMERO, F. M ; ARMIENTA, M. A ; CARRILLO-CHAVEZ, A</creatorcontrib><description>Arsenic retention by carbonate-rich aquifer material at Zimapán, México, was studied to gain insight into the processes controlling arsenic mobility in natural systems. Batch experiments showed that retention of soluble As (V) on carbonate-rich aquifer material was 35.3-90% in the pH range of 7-9 found in Zimapán natural water. Chemical and mineralogical compositions, point of zero charge (PZC), and experimental arsenic retention at various pH of three composite samples of limestone (M1, M2, M3) showed that sorption (adsorption and coprecipitation) may be one of the main processes controlling arsenic mobility in the Zimapán As-polluted aquifer. The PZC values approximately corresponded to the PZC reported for the main minerals present in each sample: hydrous ferric oxides (M1), calcite (M2), and the range from hydrous ferric oxides and calcite (M3). The chemical and mineralogical compositions of each sample explain the obtained PZC values. Experimental and modeled arsenic retention at various pH values on sample M1 corresponded to reported arsenic adsorption onto hydrous ferric oxides. Coprecipitacion of complex Ca arsenates or arsenic adsorption onto calcite or clay minerals could be the main processes of arsenic retention on samples M2 and M3. Groundwater flow through the granular, carbonate-rich, shallow aquifer may decrease the water As content as a result of these interactions. A remediation method based on the promotion of polluted water flow into the shallow aquifer could be developed from these results.</description><identifier>ISSN: 0090-4341</identifier><identifier>EISSN: 1432-0703</identifier><identifier>DOI: 10.1007/s00244-004-3009-1</identifier><identifier>PMID: 15346773</identifier><identifier>CODEN: AECTCV</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Adsorption ; Animal, plant and microbial ecology ; Applied ecology ; Aquifers ; Arsenates ; Arsenic ; Arsenic - chemistry ; Biological and medical sciences ; Calcite ; Carbonates - chemistry ; Chemical Precipitation ; Clay minerals ; Ecotoxicology, biological effects of pollution ; Fundamental and applied biological sciences. Psychology ; General aspects ; Groundwater flow ; Hydrogen-Ion Concentration ; Limestone ; Mexico ; Mineralogy ; Minerals ; Oxides ; Retention ; Sorption ; Water flow ; Water Movements ; Water Pollutants - isolation & purification ; Water pollution ; Water Pollution - prevention & control ; Water Supply</subject><ispartof>Archives of environmental contamination and toxicology, 2004-07, Vol.47 (1), p.1-13</ispartof><rights>2004 INIST-CNRS</rights><rights>Springer-Verlag New York Inc. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15837499$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15346773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ROMERO, F. M</creatorcontrib><creatorcontrib>ARMIENTA, M. A</creatorcontrib><creatorcontrib>CARRILLO-CHAVEZ, A</creatorcontrib><title>Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México</title><title>Archives of environmental contamination and toxicology</title><addtitle>Arch Environ Contam Toxicol</addtitle><description>Arsenic retention by carbonate-rich aquifer material at Zimapán, México, was studied to gain insight into the processes controlling arsenic mobility in natural systems. Batch experiments showed that retention of soluble As (V) on carbonate-rich aquifer material was 35.3-90% in the pH range of 7-9 found in Zimapán natural water. Chemical and mineralogical compositions, point of zero charge (PZC), and experimental arsenic retention at various pH of three composite samples of limestone (M1, M2, M3) showed that sorption (adsorption and coprecipitation) may be one of the main processes controlling arsenic mobility in the Zimapán As-polluted aquifer. The PZC values approximately corresponded to the PZC reported for the main minerals present in each sample: hydrous ferric oxides (M1), calcite (M2), and the range from hydrous ferric oxides and calcite (M3). The chemical and mineralogical compositions of each sample explain the obtained PZC values. Experimental and modeled arsenic retention at various pH values on sample M1 corresponded to reported arsenic adsorption onto hydrous ferric oxides. Coprecipitacion of complex Ca arsenates or arsenic adsorption onto calcite or clay minerals could be the main processes of arsenic retention on samples M2 and M3. Groundwater flow through the granular, carbonate-rich, shallow aquifer may decrease the water As content as a result of these interactions. A remediation method based on the promotion of polluted water flow into the shallow aquifer could be developed from these results.</description><subject>Adsorption</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Aquifers</subject><subject>Arsenates</subject><subject>Arsenic</subject><subject>Arsenic - chemistry</subject><subject>Biological and medical sciences</subject><subject>Calcite</subject><subject>Carbonates - chemistry</subject><subject>Chemical Precipitation</subject><subject>Clay minerals</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Groundwater flow</subject><subject>Hydrogen-Ion Concentration</subject><subject>Limestone</subject><subject>Mexico</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Oxides</subject><subject>Retention</subject><subject>Sorption</subject><subject>Water flow</subject><subject>Water Movements</subject><subject>Water Pollutants - isolation & purification</subject><subject>Water pollution</subject><subject>Water Pollution - prevention & control</subject><subject>Water Supply</subject><issn>0090-4341</issn><issn>1432-0703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE9rFTEUxYMo9vn0A7iRIOiq0Zu5902SZSn-g5ZudONmSDIZTZmZvCYz0Pdxuuzn6Bcz4BPEjasLh9853HMYeynhnQRQ7wtAQyQASCCAEfIR20jCRoACfMw2VQNBSPKEPSvlGkA2WtNTdiJ3SK1SuGE_znIJc_S8pLxfYpq5O3Bvs0uzXYLI0f_k9maNQ8h8qkqOdjzllvs0LzmNvBrsMWFKLo5xOXC78O9xsvuHu_mUXz7c30afnrMngx1LeHG8W_bt44ev55_FxdWnL-dnF8IimUWoVpMxzpLW0IbWojG963sFmno5uAFNO1DrvGwUNKEnqV1QhoxE0I2WA27Z29-5-5xu1lCWborFh3G0c0hr6RqNLcKu-S8oDSGYutGWvf4HvE5rnmuJTqHc1U9JV-jVEVrdFPpun-sA-dD9GboCb46ALd6OQ7azj-UvTqOqzfEX2JuM-g</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>ROMERO, F. M</creator><creator>ARMIENTA, M. A</creator><creator>CARRILLO-CHAVEZ, A</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7UA</scope><scope>KR7</scope></search><sort><creationdate>20040701</creationdate><title>Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México</title><author>ROMERO, F. M ; ARMIENTA, M. A ; CARRILLO-CHAVEZ, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-768499ba48806e6a399dbdd7084d1fbf396f46bc12702ed418be79491308281f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adsorption</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Aquifers</topic><topic>Arsenates</topic><topic>Arsenic</topic><topic>Arsenic - chemistry</topic><topic>Biological and medical sciences</topic><topic>Calcite</topic><topic>Carbonates - chemistry</topic><topic>Chemical Precipitation</topic><topic>Clay minerals</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Groundwater flow</topic><topic>Hydrogen-Ion Concentration</topic><topic>Limestone</topic><topic>Mexico</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Oxides</topic><topic>Retention</topic><topic>Sorption</topic><topic>Water flow</topic><topic>Water Movements</topic><topic>Water Pollutants - isolation & purification</topic><topic>Water pollution</topic><topic>Water Pollution - prevention & control</topic><topic>Water Supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROMERO, F. M</creatorcontrib><creatorcontrib>ARMIENTA, M. A</creatorcontrib><creatorcontrib>CARRILLO-CHAVEZ, A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Archives of environmental contamination and toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROMERO, F. M</au><au>ARMIENTA, M. A</au><au>CARRILLO-CHAVEZ, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México</atitle><jtitle>Archives of environmental contamination and toxicology</jtitle><addtitle>Arch Environ Contam Toxicol</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>47</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0090-4341</issn><eissn>1432-0703</eissn><coden>AECTCV</coden><abstract>Arsenic retention by carbonate-rich aquifer material at Zimapán, México, was studied to gain insight into the processes controlling arsenic mobility in natural systems. Batch experiments showed that retention of soluble As (V) on carbonate-rich aquifer material was 35.3-90% in the pH range of 7-9 found in Zimapán natural water. Chemical and mineralogical compositions, point of zero charge (PZC), and experimental arsenic retention at various pH of three composite samples of limestone (M1, M2, M3) showed that sorption (adsorption and coprecipitation) may be one of the main processes controlling arsenic mobility in the Zimapán As-polluted aquifer. The PZC values approximately corresponded to the PZC reported for the main minerals present in each sample: hydrous ferric oxides (M1), calcite (M2), and the range from hydrous ferric oxides and calcite (M3). The chemical and mineralogical compositions of each sample explain the obtained PZC values. Experimental and modeled arsenic retention at various pH values on sample M1 corresponded to reported arsenic adsorption onto hydrous ferric oxides. Coprecipitacion of complex Ca arsenates or arsenic adsorption onto calcite or clay minerals could be the main processes of arsenic retention on samples M2 and M3. Groundwater flow through the granular, carbonate-rich, shallow aquifer may decrease the water As content as a result of these interactions. A remediation method based on the promotion of polluted water flow into the shallow aquifer could be developed from these results.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer-Verlag</pub><pmid>15346773</pmid><doi>10.1007/s00244-004-3009-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-4341 |
ispartof | Archives of environmental contamination and toxicology, 2004-07, Vol.47 (1), p.1-13 |
issn | 0090-4341 1432-0703 |
language | eng |
recordid | cdi_proquest_miscellaneous_28363052 |
source | MEDLINE; SpringerLink Journals (MCLS) |
subjects | Adsorption Animal, plant and microbial ecology Applied ecology Aquifers Arsenates Arsenic Arsenic - chemistry Biological and medical sciences Calcite Carbonates - chemistry Chemical Precipitation Clay minerals Ecotoxicology, biological effects of pollution Fundamental and applied biological sciences. Psychology General aspects Groundwater flow Hydrogen-Ion Concentration Limestone Mexico Mineralogy Minerals Oxides Retention Sorption Water flow Water Movements Water Pollutants - isolation & purification Water pollution Water Pollution - prevention & control Water Supply |
title | Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arsenic%20sorption%20by%20carbonate-rich%20aquifer%20material,%20a%20control%20on%20arsenic%20mobility%20at%20Zimap%C3%A1n,%20M%C3%A9xico&rft.jtitle=Archives%20of%20environmental%20contamination%20and%20toxicology&rft.au=ROMERO,%20F.%20M&rft.date=2004-07-01&rft.volume=47&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0090-4341&rft.eissn=1432-0703&rft.coden=AECTCV&rft_id=info:doi/10.1007/s00244-004-3009-1&rft_dat=%3Cproquest_pubme%3E19430977%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=731548848&rft_id=info:pmid/15346773&rfr_iscdi=true |