Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures

The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1992-01, Vol.39 (1), p.11-18
Hauptverfasser: Ayme-Bellegarda, E., Habashy, T.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 11
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 39
creator Ayme-Bellegarda, E.
Habashy, T.M.
description The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.< >
doi_str_mv 10.1109/58.166805
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28360739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>166805</ieee_id><sourcerecordid>734255760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-32af212e08dd4d9edf205cd05acb9c0f54a112a132e47cfad520eca16e9e979a3</originalsourceid><addsrcrecordid>eNp90T1r3TAUgGERGpLbNEPXDsVDScngRB-WLY0lpB8Q6NLM5lg6DkplOdWRA_n39cWXZuskBI9ewTmMvRf8Sghur7W5Em1ruD5iO6Glro3V-g3bcWN0rbjgp-wt0SPnommsPGGnwshWCaF2LN3HkoHmFFwV0jNmwooclII5pIdqHqtpiSX4MGGiMCeI1Tw8oitUDUsO6NdXG4nwgnm9YwQqa20A9_shz0vyFZW8uLJkpHfseIRIeH44z9j919tfN9_ru5_fftx8uatdw1WplYRRConceN94i36UXDvPNbjBOj7qBoSQIJTEpnMjeC05OhAtWrSdBXXGPm_dpzz_WZBKPwVyGCMknBfqO9VIrbuWr_Liv1Ia1fJO2RVebtDlmSjj2D_lMEF-6QXv92votem3Naz24yG6DBP6V3mY-wo-HQCs045jhuQC_XN63zP7zoeNBUR8rWyf_AWVIJpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28360739</pqid></control><display><type>article</type><title>Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures</title><source>IEEE Electronic Library (IEL)</source><creator>Ayme-Bellegarda, E. ; Habashy, T.M.</creator><creatorcontrib>Ayme-Bellegarda, E. ; Habashy, T.M.</creatorcontrib><description>The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.&lt; &gt;</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/58.166805</identifier><identifier>PMID: 18263113</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Approximation methods ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Geometry ; Image retrieval ; Integral equations ; Inverse problems ; Multidimensional systems ; Physics ; Scattering ; Singular value decomposition ; Ultrasonic imaging ; Ultrasonics, quantum acoustics, and physical effects of sound ; Vectors</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1992-01, Vol.39 (1), p.11-18</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-32af212e08dd4d9edf205cd05acb9c0f54a112a132e47cfad520eca16e9e979a3</citedby><cites>FETCH-LOGICAL-c403t-32af212e08dd4d9edf205cd05acb9c0f54a112a132e47cfad520eca16e9e979a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/166805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/166805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5110985$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18263113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayme-Bellegarda, E.</creatorcontrib><creatorcontrib>Habashy, T.M.</creatorcontrib><title>Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.&lt; &gt;</description><subject>Acoustics</subject><subject>Approximation methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometry</subject><subject>Image retrieval</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Multidimensional systems</subject><subject>Physics</subject><subject>Scattering</subject><subject>Singular value decomposition</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Vectors</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp90T1r3TAUgGERGpLbNEPXDsVDScngRB-WLY0lpB8Q6NLM5lg6DkplOdWRA_n39cWXZuskBI9ewTmMvRf8Sghur7W5Em1ruD5iO6Glro3V-g3bcWN0rbjgp-wt0SPnommsPGGnwshWCaF2LN3HkoHmFFwV0jNmwooclII5pIdqHqtpiSX4MGGiMCeI1Tw8oitUDUsO6NdXG4nwgnm9YwQqa20A9_shz0vyFZW8uLJkpHfseIRIeH44z9j919tfN9_ru5_fftx8uatdw1WplYRRConceN94i36UXDvPNbjBOj7qBoSQIJTEpnMjeC05OhAtWrSdBXXGPm_dpzz_WZBKPwVyGCMknBfqO9VIrbuWr_Liv1Ia1fJO2RVebtDlmSjj2D_lMEF-6QXv92votem3Naz24yG6DBP6V3mY-wo-HQCs045jhuQC_XN63zP7zoeNBUR8rWyf_AWVIJpI</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Ayme-Bellegarda, E.</creator><creator>Habashy, T.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>199201</creationdate><title>Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures</title><author>Ayme-Bellegarda, E. ; Habashy, T.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-32af212e08dd4d9edf205cd05acb9c0f54a112a132e47cfad520eca16e9e979a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Acoustics</topic><topic>Approximation methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometry</topic><topic>Image retrieval</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Multidimensional systems</topic><topic>Physics</topic><topic>Scattering</topic><topic>Singular value decomposition</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayme-Bellegarda, E.</creatorcontrib><creatorcontrib>Habashy, T.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayme-Bellegarda, E.</au><au>Habashy, T.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>1992-01</date><risdate>1992</risdate><volume>39</volume><issue>1</issue><spage>11</spage><epage>18</epage><pages>11-18</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18263113</pmid><doi>10.1109/58.166805</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1992-01, Vol.39 (1), p.11-18
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_28360739
source IEEE Electronic Library (IEL)
subjects Acoustics
Approximation methods
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Geometry
Image retrieval
Integral equations
Inverse problems
Multidimensional systems
Physics
Scattering
Singular value decomposition
Ultrasonic imaging
Ultrasonics, quantum acoustics, and physical effects of sound
Vectors
title Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20inverse%20scattering%20of%20multidimensional%20objects%20buried%20in%20multilayered%20elastic%20background%20structures&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Ayme-Bellegarda,%20E.&rft.date=1992-01&rft.volume=39&rft.issue=1&rft.spage=11&rft.epage=18&rft.pages=11-18&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/58.166805&rft_dat=%3Cproquest_RIE%3E734255760%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28360739&rft_id=info:pmid/18263113&rft_ieee_id=166805&rfr_iscdi=true