Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures
The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1992-01, Vol.39 (1), p.11-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 39 |
creator | Ayme-Bellegarda, E. Habashy, T.M. |
description | The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.< > |
doi_str_mv | 10.1109/58.166805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28360739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>166805</ieee_id><sourcerecordid>734255760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-32af212e08dd4d9edf205cd05acb9c0f54a112a132e47cfad520eca16e9e979a3</originalsourceid><addsrcrecordid>eNp90T1r3TAUgGERGpLbNEPXDsVDScngRB-WLY0lpB8Q6NLM5lg6DkplOdWRA_n39cWXZuskBI9ewTmMvRf8Sghur7W5Em1ruD5iO6Glro3V-g3bcWN0rbjgp-wt0SPnommsPGGnwshWCaF2LN3HkoHmFFwV0jNmwooclII5pIdqHqtpiSX4MGGiMCeI1Tw8oitUDUsO6NdXG4nwgnm9YwQqa20A9_shz0vyFZW8uLJkpHfseIRIeH44z9j919tfN9_ru5_fftx8uatdw1WplYRRConceN94i36UXDvPNbjBOj7qBoSQIJTEpnMjeC05OhAtWrSdBXXGPm_dpzz_WZBKPwVyGCMknBfqO9VIrbuWr_Liv1Ia1fJO2RVebtDlmSjj2D_lMEF-6QXv92votem3Naz24yG6DBP6V3mY-wo-HQCs045jhuQC_XN63zP7zoeNBUR8rWyf_AWVIJpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28360739</pqid></control><display><type>article</type><title>Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures</title><source>IEEE Electronic Library (IEL)</source><creator>Ayme-Bellegarda, E. ; Habashy, T.M.</creator><creatorcontrib>Ayme-Bellegarda, E. ; Habashy, T.M.</creatorcontrib><description>The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.< ></description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/58.166805</identifier><identifier>PMID: 18263113</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Approximation methods ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Geometry ; Image retrieval ; Integral equations ; Inverse problems ; Multidimensional systems ; Physics ; Scattering ; Singular value decomposition ; Ultrasonic imaging ; Ultrasonics, quantum acoustics, and physical effects of sound ; Vectors</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1992-01, Vol.39 (1), p.11-18</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-32af212e08dd4d9edf205cd05acb9c0f54a112a132e47cfad520eca16e9e979a3</citedby><cites>FETCH-LOGICAL-c403t-32af212e08dd4d9edf205cd05acb9c0f54a112a132e47cfad520eca16e9e979a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/166805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/166805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5110985$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18263113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayme-Bellegarda, E.</creatorcontrib><creatorcontrib>Habashy, T.M.</creatorcontrib><title>Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.< ></description><subject>Acoustics</subject><subject>Approximation methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometry</subject><subject>Image retrieval</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Multidimensional systems</subject><subject>Physics</subject><subject>Scattering</subject><subject>Singular value decomposition</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Vectors</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp90T1r3TAUgGERGpLbNEPXDsVDScngRB-WLY0lpB8Q6NLM5lg6DkplOdWRA_n39cWXZuskBI9ewTmMvRf8Sghur7W5Em1ruD5iO6Glro3V-g3bcWN0rbjgp-wt0SPnommsPGGnwshWCaF2LN3HkoHmFFwV0jNmwooclII5pIdqHqtpiSX4MGGiMCeI1Tw8oitUDUsO6NdXG4nwgnm9YwQqa20A9_shz0vyFZW8uLJkpHfseIRIeH44z9j919tfN9_ru5_fftx8uatdw1WplYRRConceN94i36UXDvPNbjBOj7qBoSQIJTEpnMjeC05OhAtWrSdBXXGPm_dpzz_WZBKPwVyGCMknBfqO9VIrbuWr_Liv1Ia1fJO2RVebtDlmSjj2D_lMEF-6QXv92votem3Naz24yG6DBP6V3mY-wo-HQCs045jhuQC_XN63zP7zoeNBUR8rWyf_AWVIJpI</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Ayme-Bellegarda, E.</creator><creator>Habashy, T.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>199201</creationdate><title>Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures</title><author>Ayme-Bellegarda, E. ; Habashy, T.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-32af212e08dd4d9edf205cd05acb9c0f54a112a132e47cfad520eca16e9e979a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Acoustics</topic><topic>Approximation methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometry</topic><topic>Image retrieval</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Multidimensional systems</topic><topic>Physics</topic><topic>Scattering</topic><topic>Singular value decomposition</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayme-Bellegarda, E.</creatorcontrib><creatorcontrib>Habashy, T.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayme-Bellegarda, E.</au><au>Habashy, T.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>1992-01</date><risdate>1992</risdate><volume>39</volume><issue>1</issue><spage>11</spage><epage>18</epage><pages>11-18</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18263113</pmid><doi>10.1109/58.166805</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1992-01, Vol.39 (1), p.11-18 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_28360739 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Approximation methods Exact sciences and technology Fundamental areas of phenomenology (including applications) Geometry Image retrieval Integral equations Inverse problems Multidimensional systems Physics Scattering Singular value decomposition Ultrasonic imaging Ultrasonics, quantum acoustics, and physical effects of sound Vectors |
title | Ultrasonic inverse scattering of multidimensional objects buried in multilayered elastic background structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20inverse%20scattering%20of%20multidimensional%20objects%20buried%20in%20multilayered%20elastic%20background%20structures&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Ayme-Bellegarda,%20E.&rft.date=1992-01&rft.volume=39&rft.issue=1&rft.spage=11&rft.epage=18&rft.pages=11-18&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/58.166805&rft_dat=%3Cproquest_RIE%3E734255760%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28360739&rft_id=info:pmid/18263113&rft_ieee_id=166805&rfr_iscdi=true |