Properties of Hybrid Systems—A Computer Science Perspective
The paper formalizes and classifies important properties of hybrid, i.e. mixed discrete and continuous, systems from a computer science point of view. General proof methods for some of these properties are also provided and applied to an example. For the central properties stability and attraction t...
Gespeichert in:
Veröffentlicht in: | Formal methods in system design 2004-05, Vol.24 (3), p.223-259 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | 3 |
container_start_page | 223 |
container_title | Formal methods in system design |
container_volume | 24 |
creator | Stauner, Thomas |
description | The paper formalizes and classifies important properties of hybrid, i.e. mixed discrete and continuous, systems from a computer science point of view. General proof methods for some of these properties are also provided and applied to an example. For the central properties stability and attraction the vital role topology plays in their definition is made obvious and parallels to invariance and persistence properties from the computer science domain are drawn. In the context of proof methods conditions are identified uner which Liapunov functions define Galois connections. This relates a control theory method of abstraction to an abstraction technique which is usually applied in computer science. As a whole the paper promotes a deeper understanding of hybrid systems by computer scientists. |
doi_str_mv | 10.1023/B:FORM.0000026091.03793.cf |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28354492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28354492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b7e5aed8222ca832f6086dad4a00f078a81b55f8e6555e3be5ca94c28f54e6d03</originalsourceid><addsrcrecordid>eNpF0DFOwzAUxnEPIFEKd4gY2BIcO3bsSgxtRClSUSsKs-U4z1JQ0gQ7QcrWQ3BCTkJDkXjLW_76hh9CNzGOYkzo3WK23Lw8R3g8wrGMI0xTSSNjz9AES8JCKRi_QJfevx8TEXM6Qfdb17TguhJ80NhgNeSuLILd4Duo_ffhax5kTd32HbhgZ0rYGwi24HwLpis_4QqdW115uP77U_S2fHjNVuF68_iUzdehIZJ0YZ4C01AIQojRghLLseCFLhKNscWp0CLOGbMCOGMMaA7MaJkYIixLgBeYTtHtabd1zUcPvlN16Q1Uld5D03tFBGVJIskxnJ1C4xrvHVjVurLWblAxVqOSWqhRSf0rqV8lZSz9ATDPX7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28354492</pqid></control><display><type>article</type><title>Properties of Hybrid Systems—A Computer Science Perspective</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stauner, Thomas</creator><creatorcontrib>Stauner, Thomas</creatorcontrib><description>The paper formalizes and classifies important properties of hybrid, i.e. mixed discrete and continuous, systems from a computer science point of view. General proof methods for some of these properties are also provided and applied to an example. For the central properties stability and attraction the vital role topology plays in their definition is made obvious and parallels to invariance and persistence properties from the computer science domain are drawn. In the context of proof methods conditions are identified uner which Liapunov functions define Galois connections. This relates a control theory method of abstraction to an abstraction technique which is usually applied in computer science. As a whole the paper promotes a deeper understanding of hybrid systems by computer scientists.</description><identifier>ISSN: 0925-9856</identifier><identifier>DOI: 10.1023/B:FORM.0000026091.03793.cf</identifier><language>eng</language><ispartof>Formal methods in system design, 2004-05, Vol.24 (3), p.223-259</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b7e5aed8222ca832f6086dad4a00f078a81b55f8e6555e3be5ca94c28f54e6d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Stauner, Thomas</creatorcontrib><title>Properties of Hybrid Systems—A Computer Science Perspective</title><title>Formal methods in system design</title><description>The paper formalizes and classifies important properties of hybrid, i.e. mixed discrete and continuous, systems from a computer science point of view. General proof methods for some of these properties are also provided and applied to an example. For the central properties stability and attraction the vital role topology plays in their definition is made obvious and parallels to invariance and persistence properties from the computer science domain are drawn. In the context of proof methods conditions are identified uner which Liapunov functions define Galois connections. This relates a control theory method of abstraction to an abstraction technique which is usually applied in computer science. As a whole the paper promotes a deeper understanding of hybrid systems by computer scientists.</description><issn>0925-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpF0DFOwzAUxnEPIFEKd4gY2BIcO3bsSgxtRClSUSsKs-U4z1JQ0gQ7QcrWQ3BCTkJDkXjLW_76hh9CNzGOYkzo3WK23Lw8R3g8wrGMI0xTSSNjz9AES8JCKRi_QJfevx8TEXM6Qfdb17TguhJ80NhgNeSuLILd4Duo_ffhax5kTd32HbhgZ0rYGwi24HwLpis_4QqdW115uP77U_S2fHjNVuF68_iUzdehIZJ0YZ4C01AIQojRghLLseCFLhKNscWp0CLOGbMCOGMMaA7MaJkYIixLgBeYTtHtabd1zUcPvlN16Q1Uld5D03tFBGVJIskxnJ1C4xrvHVjVurLWblAxVqOSWqhRSf0rqV8lZSz9ATDPX7A</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Stauner, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200405</creationdate><title>Properties of Hybrid Systems—A Computer Science Perspective</title><author>Stauner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b7e5aed8222ca832f6086dad4a00f078a81b55f8e6555e3be5ca94c28f54e6d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stauner, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Formal methods in system design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stauner, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Hybrid Systems—A Computer Science Perspective</atitle><jtitle>Formal methods in system design</jtitle><date>2004-05</date><risdate>2004</risdate><volume>24</volume><issue>3</issue><spage>223</spage><epage>259</epage><pages>223-259</pages><issn>0925-9856</issn><abstract>The paper formalizes and classifies important properties of hybrid, i.e. mixed discrete and continuous, systems from a computer science point of view. General proof methods for some of these properties are also provided and applied to an example. For the central properties stability and attraction the vital role topology plays in their definition is made obvious and parallels to invariance and persistence properties from the computer science domain are drawn. In the context of proof methods conditions are identified uner which Liapunov functions define Galois connections. This relates a control theory method of abstraction to an abstraction technique which is usually applied in computer science. As a whole the paper promotes a deeper understanding of hybrid systems by computer scientists.</abstract><doi>10.1023/B:FORM.0000026091.03793.cf</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9856 |
ispartof | Formal methods in system design, 2004-05, Vol.24 (3), p.223-259 |
issn | 0925-9856 |
language | eng |
recordid | cdi_proquest_miscellaneous_28354492 |
source | SpringerLink Journals - AutoHoldings |
title | Properties of Hybrid Systems—A Computer Science Perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Hybrid%20Systems%E2%80%94A%20Computer%20Science%20Perspective&rft.jtitle=Formal%20methods%20in%20system%20design&rft.au=Stauner,%20Thomas&rft.date=2004-05&rft.volume=24&rft.issue=3&rft.spage=223&rft.epage=259&rft.pages=223-259&rft.issn=0925-9856&rft_id=info:doi/10.1023/B:FORM.0000026091.03793.cf&rft_dat=%3Cproquest_cross%3E28354492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28354492&rft_id=info:pmid/&rfr_iscdi=true |