Origin of self-aligned nano-domains in MgB2
Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract...
Gespeichert in:
Veröffentlicht in: | Ceramics international 2004, Vol.30 (7), p.1575-1579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1579 |
---|---|
container_issue | 7 |
container_start_page | 1575 |
container_title | Ceramics international |
container_volume | 30 |
creator | LI, S YIP, T. H SUN, C. Q WIDJAJA, S LIANG, M. H |
description | Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract the surrounding edge dislocations, which are then incorporated and result in wall growth, forming small angle boundaries to connect well-ordered nano-domains. To minimise the energy of the system, the dislocations migrate to interdomain boundaries surrounding the nano-domains. These dislocation rearrangements result in rotation of adjacent nano-domains to form a contiguous crystal. By continuing this subgrain rotation process on neighbouring nano-domains, large (211) nano-domains can be aligned as observed by HRTEM. It is shown that the (211) plane may have the minimum surface energy in MgB2 and the (211) zone is the favoured orientation for crystal growth. 14 refs. |
doi_str_mv | 10.1016/j.ceramint.2003.12.196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28354158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28319569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-5a6e2b869fef3d7cab80c992489f6698b8d228f1037a073ad4962dbf2e095cd63</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EEqXwCigLLMjB99gjVNykoi4wW44vlavEKXY68PakahEr0xnO__1H5wPgGqMaIyzuN7X12fQxjTVBiNaY1FiJEzDDsqGQKi5OwQyRhkApGTkHF6Vs0AQqhmbgbpXjOqZqCFXxXYCmi-vkXZVMGqAbehNTqab9-_qRXIKzYLrir45zDj6fnz4Wr3C5enlbPCyhpYyPkBvhSSuFCj5Q11jTSmSVIkyqIISSrXSEyIARbQxqqHFMCeLaQDxS3DpB5-D20LvNw9fOl1H3sVjfdSb5YVc0kZQzzOV_gnh6X01BcQjaPJSSfdDbHHuTvzVGei9Rb_SvRL2XqDHRk8QJvDleMMWaLmSTbCx_tMCIIcnpD33Lcy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28319569</pqid></control><display><type>article</type><title>Origin of self-aligned nano-domains in MgB2</title><source>Elsevier ScienceDirect Journals</source><creator>LI, S ; YIP, T. H ; SUN, C. Q ; WIDJAJA, S ; LIANG, M. H</creator><creatorcontrib>LI, S ; YIP, T. H ; SUN, C. Q ; WIDJAJA, S ; LIANG, M. H</creatorcontrib><description>Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract the surrounding edge dislocations, which are then incorporated and result in wall growth, forming small angle boundaries to connect well-ordered nano-domains. To minimise the energy of the system, the dislocations migrate to interdomain boundaries surrounding the nano-domains. These dislocation rearrangements result in rotation of adjacent nano-domains to form a contiguous crystal. By continuing this subgrain rotation process on neighbouring nano-domains, large (211) nano-domains can be aligned as observed by HRTEM. It is shown that the (211) plane may have the minimum surface energy in MgB2 and the (211) zone is the favoured orientation for crystal growth. 14 refs.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2003.12.196</identifier><language>eng</language><publisher>Kidlington: Elsevier Science</publisher><subject>Clusters, nanoparticles, and nanocrystalline materials ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.) ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Physics ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Ceramics international, 2004, Vol.30 (7), p.1575-1579</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-5a6e2b869fef3d7cab80c992489f6698b8d228f1037a073ad4962dbf2e095cd63</citedby><cites>FETCH-LOGICAL-c345t-5a6e2b869fef3d7cab80c992489f6698b8d228f1037a073ad4962dbf2e095cd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,4038,4039,23913,23914,25123,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16104085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LI, S</creatorcontrib><creatorcontrib>YIP, T. H</creatorcontrib><creatorcontrib>SUN, C. Q</creatorcontrib><creatorcontrib>WIDJAJA, S</creatorcontrib><creatorcontrib>LIANG, M. H</creatorcontrib><title>Origin of self-aligned nano-domains in MgB2</title><title>Ceramics international</title><description>Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract the surrounding edge dislocations, which are then incorporated and result in wall growth, forming small angle boundaries to connect well-ordered nano-domains. To minimise the energy of the system, the dislocations migrate to interdomain boundaries surrounding the nano-domains. These dislocation rearrangements result in rotation of adjacent nano-domains to form a contiguous crystal. By continuing this subgrain rotation process on neighbouring nano-domains, large (211) nano-domains can be aligned as observed by HRTEM. It is shown that the (211) plane may have the minimum surface energy in MgB2 and the (211) zone is the favoured orientation for crystal growth. 14 refs.</description><subject>Clusters, nanoparticles, and nanocrystalline materials</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.)</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhi0EEqXwCigLLMjB99gjVNykoi4wW44vlavEKXY68PakahEr0xnO__1H5wPgGqMaIyzuN7X12fQxjTVBiNaY1FiJEzDDsqGQKi5OwQyRhkApGTkHF6Vs0AQqhmbgbpXjOqZqCFXxXYCmi-vkXZVMGqAbehNTqab9-_qRXIKzYLrir45zDj6fnz4Wr3C5enlbPCyhpYyPkBvhSSuFCj5Q11jTSmSVIkyqIISSrXSEyIARbQxqqHFMCeLaQDxS3DpB5-D20LvNw9fOl1H3sVjfdSb5YVc0kZQzzOV_gnh6X01BcQjaPJSSfdDbHHuTvzVGei9Rb_SvRL2XqDHRk8QJvDleMMWaLmSTbCx_tMCIIcnpD33Lcy8</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>LI, S</creator><creator>YIP, T. H</creator><creator>SUN, C. Q</creator><creator>WIDJAJA, S</creator><creator>LIANG, M. H</creator><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>2004</creationdate><title>Origin of self-aligned nano-domains in MgB2</title><author>LI, S ; YIP, T. H ; SUN, C. Q ; WIDJAJA, S ; LIANG, M. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-5a6e2b869fef3d7cab80c992489f6698b8d228f1037a073ad4962dbf2e095cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Clusters, nanoparticles, and nanocrystalline materials</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.)</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LI, S</creatorcontrib><creatorcontrib>YIP, T. H</creatorcontrib><creatorcontrib>SUN, C. Q</creatorcontrib><creatorcontrib>WIDJAJA, S</creatorcontrib><creatorcontrib>LIANG, M. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LI, S</au><au>YIP, T. H</au><au>SUN, C. Q</au><au>WIDJAJA, S</au><au>LIANG, M. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of self-aligned nano-domains in MgB2</atitle><jtitle>Ceramics international</jtitle><date>2004</date><risdate>2004</risdate><volume>30</volume><issue>7</issue><spage>1575</spage><epage>1579</epage><pages>1575-1579</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract the surrounding edge dislocations, which are then incorporated and result in wall growth, forming small angle boundaries to connect well-ordered nano-domains. To minimise the energy of the system, the dislocations migrate to interdomain boundaries surrounding the nano-domains. These dislocation rearrangements result in rotation of adjacent nano-domains to form a contiguous crystal. By continuing this subgrain rotation process on neighbouring nano-domains, large (211) nano-domains can be aligned as observed by HRTEM. It is shown that the (211) plane may have the minimum surface energy in MgB2 and the (211) zone is the favoured orientation for crystal growth. 14 refs.</abstract><cop>Kidlington</cop><pub>Elsevier Science</pub><doi>10.1016/j.ceramint.2003.12.196</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8842 |
ispartof | Ceramics international, 2004, Vol.30 (7), p.1575-1579 |
issn | 0272-8842 1873-3956 |
language | eng |
recordid | cdi_proquest_miscellaneous_28354158 |
source | Elsevier ScienceDirect Journals |
subjects | Clusters, nanoparticles, and nanocrystalline materials Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Defects and impurities in crystals microstructure Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.) Exact sciences and technology Materials science Methods of crystal growth physics of crystal growth Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Physics Structure of solids and liquids crystallography Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation |
title | Origin of self-aligned nano-domains in MgB2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20self-aligned%20nano-domains%20in%20MgB2&rft.jtitle=Ceramics%20international&rft.au=LI,%20S&rft.date=2004&rft.volume=30&rft.issue=7&rft.spage=1575&rft.epage=1579&rft.pages=1575-1579&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2003.12.196&rft_dat=%3Cproquest_cross%3E28319569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28319569&rft_id=info:pmid/&rfr_iscdi=true |