Origin of self-aligned nano-domains in MgB2

Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ceramics international 2004, Vol.30 (7), p.1575-1579
Hauptverfasser: LI, S, YIP, T. H, SUN, C. Q, WIDJAJA, S, LIANG, M. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 7
container_start_page 1575
container_title Ceramics international
container_volume 30
creator LI, S
YIP, T. H
SUN, C. Q
WIDJAJA, S
LIANG, M. H
description Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract the surrounding edge dislocations, which are then incorporated and result in wall growth, forming small angle boundaries to connect well-ordered nano-domains. To minimise the energy of the system, the dislocations migrate to interdomain boundaries surrounding the nano-domains. These dislocation rearrangements result in rotation of adjacent nano-domains to form a contiguous crystal. By continuing this subgrain rotation process on neighbouring nano-domains, large (211) nano-domains can be aligned as observed by HRTEM. It is shown that the (211) plane may have the minimum surface energy in MgB2 and the (211) zone is the favoured orientation for crystal growth. 14 refs.
doi_str_mv 10.1016/j.ceramint.2003.12.196
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28354158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28319569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-5a6e2b869fef3d7cab80c992489f6698b8d228f1037a073ad4962dbf2e095cd63</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EEqXwCigLLMjB99gjVNykoi4wW44vlavEKXY68PakahEr0xnO__1H5wPgGqMaIyzuN7X12fQxjTVBiNaY1FiJEzDDsqGQKi5OwQyRhkApGTkHF6Vs0AQqhmbgbpXjOqZqCFXxXYCmi-vkXZVMGqAbehNTqab9-_qRXIKzYLrir45zDj6fnz4Wr3C5enlbPCyhpYyPkBvhSSuFCj5Q11jTSmSVIkyqIISSrXSEyIARbQxqqHFMCeLaQDxS3DpB5-D20LvNw9fOl1H3sVjfdSb5YVc0kZQzzOV_gnh6X01BcQjaPJSSfdDbHHuTvzVGei9Rb_SvRL2XqDHRk8QJvDleMMWaLmSTbCx_tMCIIcnpD33Lcy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28319569</pqid></control><display><type>article</type><title>Origin of self-aligned nano-domains in MgB2</title><source>Elsevier ScienceDirect Journals</source><creator>LI, S ; YIP, T. H ; SUN, C. Q ; WIDJAJA, S ; LIANG, M. H</creator><creatorcontrib>LI, S ; YIP, T. H ; SUN, C. Q ; WIDJAJA, S ; LIANG, M. H</creatorcontrib><description>Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract the surrounding edge dislocations, which are then incorporated and result in wall growth, forming small angle boundaries to connect well-ordered nano-domains. To minimise the energy of the system, the dislocations migrate to interdomain boundaries surrounding the nano-domains. These dislocation rearrangements result in rotation of adjacent nano-domains to form a contiguous crystal. By continuing this subgrain rotation process on neighbouring nano-domains, large (211) nano-domains can be aligned as observed by HRTEM. It is shown that the (211) plane may have the minimum surface energy in MgB2 and the (211) zone is the favoured orientation for crystal growth. 14 refs.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2003.12.196</identifier><language>eng</language><publisher>Kidlington: Elsevier Science</publisher><subject>Clusters, nanoparticles, and nanocrystalline materials ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.) ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Physics ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Ceramics international, 2004, Vol.30 (7), p.1575-1579</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-5a6e2b869fef3d7cab80c992489f6698b8d228f1037a073ad4962dbf2e095cd63</citedby><cites>FETCH-LOGICAL-c345t-5a6e2b869fef3d7cab80c992489f6698b8d228f1037a073ad4962dbf2e095cd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,4038,4039,23913,23914,25123,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16104085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LI, S</creatorcontrib><creatorcontrib>YIP, T. H</creatorcontrib><creatorcontrib>SUN, C. Q</creatorcontrib><creatorcontrib>WIDJAJA, S</creatorcontrib><creatorcontrib>LIANG, M. H</creatorcontrib><title>Origin of self-aligned nano-domains in MgB2</title><title>Ceramics international</title><description>Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract the surrounding edge dislocations, which are then incorporated and result in wall growth, forming small angle boundaries to connect well-ordered nano-domains. To minimise the energy of the system, the dislocations migrate to interdomain boundaries surrounding the nano-domains. These dislocation rearrangements result in rotation of adjacent nano-domains to form a contiguous crystal. By continuing this subgrain rotation process on neighbouring nano-domains, large (211) nano-domains can be aligned as observed by HRTEM. It is shown that the (211) plane may have the minimum surface energy in MgB2 and the (211) zone is the favoured orientation for crystal growth. 14 refs.</description><subject>Clusters, nanoparticles, and nanocrystalline materials</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.)</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhi0EEqXwCigLLMjB99gjVNykoi4wW44vlavEKXY68PakahEr0xnO__1H5wPgGqMaIyzuN7X12fQxjTVBiNaY1FiJEzDDsqGQKi5OwQyRhkApGTkHF6Vs0AQqhmbgbpXjOqZqCFXxXYCmi-vkXZVMGqAbehNTqab9-_qRXIKzYLrir45zDj6fnz4Wr3C5enlbPCyhpYyPkBvhSSuFCj5Q11jTSmSVIkyqIISSrXSEyIARbQxqqHFMCeLaQDxS3DpB5-D20LvNw9fOl1H3sVjfdSb5YVc0kZQzzOV_gnh6X01BcQjaPJSSfdDbHHuTvzVGei9Rb_SvRL2XqDHRk8QJvDleMMWaLmSTbCx_tMCIIcnpD33Lcy8</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>LI, S</creator><creator>YIP, T. H</creator><creator>SUN, C. Q</creator><creator>WIDJAJA, S</creator><creator>LIANG, M. H</creator><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>2004</creationdate><title>Origin of self-aligned nano-domains in MgB2</title><author>LI, S ; YIP, T. H ; SUN, C. Q ; WIDJAJA, S ; LIANG, M. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-5a6e2b869fef3d7cab80c992489f6698b8d228f1037a073ad4962dbf2e095cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Clusters, nanoparticles, and nanocrystalline materials</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.)</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LI, S</creatorcontrib><creatorcontrib>YIP, T. H</creatorcontrib><creatorcontrib>SUN, C. Q</creatorcontrib><creatorcontrib>WIDJAJA, S</creatorcontrib><creatorcontrib>LIANG, M. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LI, S</au><au>YIP, T. H</au><au>SUN, C. Q</au><au>WIDJAJA, S</au><au>LIANG, M. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of self-aligned nano-domains in MgB2</atitle><jtitle>Ceramics international</jtitle><date>2004</date><risdate>2004</risdate><volume>30</volume><issue>7</issue><spage>1575</spage><epage>1579</epage><pages>1575-1579</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>Random arrangement of B atoms in the parent amorphous phase leads to a number of atomic defects, such as dislocations, formed in the reaction product of Mg and B. During crystallisation, dislocation walls form from random arrays of dislocations. Stress at the end of dislocation wall segments attract the surrounding edge dislocations, which are then incorporated and result in wall growth, forming small angle boundaries to connect well-ordered nano-domains. To minimise the energy of the system, the dislocations migrate to interdomain boundaries surrounding the nano-domains. These dislocation rearrangements result in rotation of adjacent nano-domains to form a contiguous crystal. By continuing this subgrain rotation process on neighbouring nano-domains, large (211) nano-domains can be aligned as observed by HRTEM. It is shown that the (211) plane may have the minimum surface energy in MgB2 and the (211) zone is the favoured orientation for crystal growth. 14 refs.</abstract><cop>Kidlington</cop><pub>Elsevier Science</pub><doi>10.1016/j.ceramint.2003.12.196</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8842
ispartof Ceramics international, 2004, Vol.30 (7), p.1575-1579
issn 0272-8842
1873-3956
language eng
recordid cdi_proquest_miscellaneous_28354158
source Elsevier ScienceDirect Journals
subjects Clusters, nanoparticles, and nanocrystalline materials
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Defects and impurities in crystals
microstructure
Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.)
Exact sciences and technology
Materials science
Methods of crystal growth
physics of crystal growth
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Physics
Structure of solids and liquids
crystallography
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Origin of self-aligned nano-domains in MgB2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20self-aligned%20nano-domains%20in%20MgB2&rft.jtitle=Ceramics%20international&rft.au=LI,%20S&rft.date=2004&rft.volume=30&rft.issue=7&rft.spage=1575&rft.epage=1579&rft.pages=1575-1579&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2003.12.196&rft_dat=%3Cproquest_cross%3E28319569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28319569&rft_id=info:pmid/&rfr_iscdi=true