Clustering of cardiometabolic risk factors in Mexican pre-adolescents

To examine clustering of cardiometabolic markers in Mexican children at age 11 years and compare a metabolic syndrome (MetS) score to an exploratory cardiometabolic health (CMH) score. We used data from children enrolled in the POSGRAD birth cohort with cardiometabolic data available (n = 413). We u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes research and clinical practice 2023-08, Vol.202, p.110818-110818, Article 110818
Hauptverfasser: Wimalasena, Sonia Tandon, Ramirez Silva, Claudia Ivonne, Sun, Yan V., Stein, Aryeh D., Rivera, Juan A., Ramakrishnan, Usha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110818
container_issue
container_start_page 110818
container_title Diabetes research and clinical practice
container_volume 202
creator Wimalasena, Sonia Tandon
Ramirez Silva, Claudia Ivonne
Sun, Yan V.
Stein, Aryeh D.
Rivera, Juan A.
Ramakrishnan, Usha
description To examine clustering of cardiometabolic markers in Mexican children at age 11 years and compare a metabolic syndrome (MetS) score to an exploratory cardiometabolic health (CMH) score. We used data from children enrolled in the POSGRAD birth cohort with cardiometabolic data available (n = 413). We used principal component analysis (PCA) to derive a Metabolic Syndrome (MetS) score and an exploratory cardiometabolic health (CMH) score, which additionally included adipokines, lipids, inflammatory markers, and adiposity. We assessed reliability of individual cardiometabolic risk as defined by MetS and CMH by calculating % agreement and Cohen’s kappa statistic. At least one cardiometabolic risk factor was present in 42 % of study participants; the most common risk factors were low High-Density Lipoprotein (HDL) cholesterol (31.9 %) and elevated triglycerides (18.2 %). Measures of adiposity and lipids explained the most variation in cardiometabolic measures for both MetS and CMH scores. Two-thirds of individuals were categorized in the same risk category by both MetS and CMH scores (κ = 0.42). MetS and CMH scores capture a similar amount of variation. Additional follow-up studies comparing predictive abilities of MetS and CMH scores may enable improved identification of children at risk for cardiometabolic disease.
doi_str_mv 10.1016/j.diabres.2023.110818
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2835280483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168822723005818</els_id><sourcerecordid>2835280483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-a2b6541347a284e99127f352c2157a7d42db24c96142f91783abc634585dc6ae3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EoqXwCKCMLAm-xXEmhKpykYpYYLYc-wS5JHGxEwRvT0oKK9M5w_efy4fQOcEZwURcbTLrdBUgZhRTlhGCJZEHaE5kQVNJaXGI5iMnf_oZOolxgzEWjOfHaMYKTikRYo5Wy2aIPQTXvSa-TowO1vkWel35xpkkuPiW1Nr0PsTEdckjfDqju2QbINXWNxANdH08RUe1biKc7esCvdyunpf36frp7mF5s04NE3mfalqJnBPGC00lh7IktKhZTg0leaELy6mtKDelIJzWJSkk05XZnSxza4QGtkCX09xt8O8DxF61brygaXQHfoiKynGaxFyyEc0n1AQfY4BabYNrdfhSBKudQbVRe4NqZ1BNBsfcxX7FULVg_1K_ykbgegJgfPTDQVDROOgMWBfA9Mp698-Kb9B2g1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835280483</pqid></control><display><type>article</type><title>Clustering of cardiometabolic risk factors in Mexican pre-adolescents</title><source>Elsevier ScienceDirect Journals</source><creator>Wimalasena, Sonia Tandon ; Ramirez Silva, Claudia Ivonne ; Sun, Yan V. ; Stein, Aryeh D. ; Rivera, Juan A. ; Ramakrishnan, Usha</creator><creatorcontrib>Wimalasena, Sonia Tandon ; Ramirez Silva, Claudia Ivonne ; Sun, Yan V. ; Stein, Aryeh D. ; Rivera, Juan A. ; Ramakrishnan, Usha</creatorcontrib><description>To examine clustering of cardiometabolic markers in Mexican children at age 11 years and compare a metabolic syndrome (MetS) score to an exploratory cardiometabolic health (CMH) score. We used data from children enrolled in the POSGRAD birth cohort with cardiometabolic data available (n = 413). We used principal component analysis (PCA) to derive a Metabolic Syndrome (MetS) score and an exploratory cardiometabolic health (CMH) score, which additionally included adipokines, lipids, inflammatory markers, and adiposity. We assessed reliability of individual cardiometabolic risk as defined by MetS and CMH by calculating % agreement and Cohen’s kappa statistic. At least one cardiometabolic risk factor was present in 42 % of study participants; the most common risk factors were low High-Density Lipoprotein (HDL) cholesterol (31.9 %) and elevated triglycerides (18.2 %). Measures of adiposity and lipids explained the most variation in cardiometabolic measures for both MetS and CMH scores. Two-thirds of individuals were categorized in the same risk category by both MetS and CMH scores (κ = 0.42). MetS and CMH scores capture a similar amount of variation. Additional follow-up studies comparing predictive abilities of MetS and CMH scores may enable improved identification of children at risk for cardiometabolic disease.</description><identifier>ISSN: 0168-8227</identifier><identifier>EISSN: 1872-8227</identifier><identifier>DOI: 10.1016/j.diabres.2023.110818</identifier><identifier>PMID: 37422166</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Biomarkers ; Cardiometabolic risk ; Mexican population ; Pre-adolescence</subject><ispartof>Diabetes research and clinical practice, 2023-08, Vol.202, p.110818-110818, Article 110818</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-a2b6541347a284e99127f352c2157a7d42db24c96142f91783abc634585dc6ae3</citedby><cites>FETCH-LOGICAL-c365t-a2b6541347a284e99127f352c2157a7d42db24c96142f91783abc634585dc6ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diabres.2023.110818$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37422166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wimalasena, Sonia Tandon</creatorcontrib><creatorcontrib>Ramirez Silva, Claudia Ivonne</creatorcontrib><creatorcontrib>Sun, Yan V.</creatorcontrib><creatorcontrib>Stein, Aryeh D.</creatorcontrib><creatorcontrib>Rivera, Juan A.</creatorcontrib><creatorcontrib>Ramakrishnan, Usha</creatorcontrib><title>Clustering of cardiometabolic risk factors in Mexican pre-adolescents</title><title>Diabetes research and clinical practice</title><addtitle>Diabetes Res Clin Pract</addtitle><description>To examine clustering of cardiometabolic markers in Mexican children at age 11 years and compare a metabolic syndrome (MetS) score to an exploratory cardiometabolic health (CMH) score. We used data from children enrolled in the POSGRAD birth cohort with cardiometabolic data available (n = 413). We used principal component analysis (PCA) to derive a Metabolic Syndrome (MetS) score and an exploratory cardiometabolic health (CMH) score, which additionally included adipokines, lipids, inflammatory markers, and adiposity. We assessed reliability of individual cardiometabolic risk as defined by MetS and CMH by calculating % agreement and Cohen’s kappa statistic. At least one cardiometabolic risk factor was present in 42 % of study participants; the most common risk factors were low High-Density Lipoprotein (HDL) cholesterol (31.9 %) and elevated triglycerides (18.2 %). Measures of adiposity and lipids explained the most variation in cardiometabolic measures for both MetS and CMH scores. Two-thirds of individuals were categorized in the same risk category by both MetS and CMH scores (κ = 0.42). MetS and CMH scores capture a similar amount of variation. Additional follow-up studies comparing predictive abilities of MetS and CMH scores may enable improved identification of children at risk for cardiometabolic disease.</description><subject>Biomarkers</subject><subject>Cardiometabolic risk</subject><subject>Mexican population</subject><subject>Pre-adolescence</subject><issn>0168-8227</issn><issn>1872-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EoqXwCKCMLAm-xXEmhKpykYpYYLYc-wS5JHGxEwRvT0oKK9M5w_efy4fQOcEZwURcbTLrdBUgZhRTlhGCJZEHaE5kQVNJaXGI5iMnf_oZOolxgzEWjOfHaMYKTikRYo5Wy2aIPQTXvSa-TowO1vkWel35xpkkuPiW1Nr0PsTEdckjfDqju2QbINXWNxANdH08RUe1biKc7esCvdyunpf36frp7mF5s04NE3mfalqJnBPGC00lh7IktKhZTg0leaELy6mtKDelIJzWJSkk05XZnSxza4QGtkCX09xt8O8DxF61brygaXQHfoiKynGaxFyyEc0n1AQfY4BabYNrdfhSBKudQbVRe4NqZ1BNBsfcxX7FULVg_1K_ykbgegJgfPTDQVDROOgMWBfA9Mp698-Kb9B2g1U</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wimalasena, Sonia Tandon</creator><creator>Ramirez Silva, Claudia Ivonne</creator><creator>Sun, Yan V.</creator><creator>Stein, Aryeh D.</creator><creator>Rivera, Juan A.</creator><creator>Ramakrishnan, Usha</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230801</creationdate><title>Clustering of cardiometabolic risk factors in Mexican pre-adolescents</title><author>Wimalasena, Sonia Tandon ; Ramirez Silva, Claudia Ivonne ; Sun, Yan V. ; Stein, Aryeh D. ; Rivera, Juan A. ; Ramakrishnan, Usha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-a2b6541347a284e99127f352c2157a7d42db24c96142f91783abc634585dc6ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Cardiometabolic risk</topic><topic>Mexican population</topic><topic>Pre-adolescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wimalasena, Sonia Tandon</creatorcontrib><creatorcontrib>Ramirez Silva, Claudia Ivonne</creatorcontrib><creatorcontrib>Sun, Yan V.</creatorcontrib><creatorcontrib>Stein, Aryeh D.</creatorcontrib><creatorcontrib>Rivera, Juan A.</creatorcontrib><creatorcontrib>Ramakrishnan, Usha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes research and clinical practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wimalasena, Sonia Tandon</au><au>Ramirez Silva, Claudia Ivonne</au><au>Sun, Yan V.</au><au>Stein, Aryeh D.</au><au>Rivera, Juan A.</au><au>Ramakrishnan, Usha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of cardiometabolic risk factors in Mexican pre-adolescents</atitle><jtitle>Diabetes research and clinical practice</jtitle><addtitle>Diabetes Res Clin Pract</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>202</volume><spage>110818</spage><epage>110818</epage><pages>110818-110818</pages><artnum>110818</artnum><issn>0168-8227</issn><eissn>1872-8227</eissn><abstract>To examine clustering of cardiometabolic markers in Mexican children at age 11 years and compare a metabolic syndrome (MetS) score to an exploratory cardiometabolic health (CMH) score. We used data from children enrolled in the POSGRAD birth cohort with cardiometabolic data available (n = 413). We used principal component analysis (PCA) to derive a Metabolic Syndrome (MetS) score and an exploratory cardiometabolic health (CMH) score, which additionally included adipokines, lipids, inflammatory markers, and adiposity. We assessed reliability of individual cardiometabolic risk as defined by MetS and CMH by calculating % agreement and Cohen’s kappa statistic. At least one cardiometabolic risk factor was present in 42 % of study participants; the most common risk factors were low High-Density Lipoprotein (HDL) cholesterol (31.9 %) and elevated triglycerides (18.2 %). Measures of adiposity and lipids explained the most variation in cardiometabolic measures for both MetS and CMH scores. Two-thirds of individuals were categorized in the same risk category by both MetS and CMH scores (κ = 0.42). MetS and CMH scores capture a similar amount of variation. Additional follow-up studies comparing predictive abilities of MetS and CMH scores may enable improved identification of children at risk for cardiometabolic disease.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>37422166</pmid><doi>10.1016/j.diabres.2023.110818</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-8227
ispartof Diabetes research and clinical practice, 2023-08, Vol.202, p.110818-110818, Article 110818
issn 0168-8227
1872-8227
language eng
recordid cdi_proquest_miscellaneous_2835280483
source Elsevier ScienceDirect Journals
subjects Biomarkers
Cardiometabolic risk
Mexican population
Pre-adolescence
title Clustering of cardiometabolic risk factors in Mexican pre-adolescents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20cardiometabolic%20risk%20factors%20in%20Mexican%20pre-adolescents&rft.jtitle=Diabetes%20research%20and%20clinical%20practice&rft.au=Wimalasena,%20Sonia%20Tandon&rft.date=2023-08-01&rft.volume=202&rft.spage=110818&rft.epage=110818&rft.pages=110818-110818&rft.artnum=110818&rft.issn=0168-8227&rft.eissn=1872-8227&rft_id=info:doi/10.1016/j.diabres.2023.110818&rft_dat=%3Cproquest_cross%3E2835280483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835280483&rft_id=info:pmid/37422166&rft_els_id=S0168822723005818&rfr_iscdi=true