Spatial Stationary Long Waves in Shear Flows
The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact sol...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 2004-03, Vol.45 (2), p.172-180 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 2 |
container_start_page | 172 |
container_title | Journal of applied mechanics and technical physics |
container_volume | 45 |
creator | Teshukov, V. M. |
description | The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found. |
doi_str_mv | 10.1023/B:JAMT.0000017579.43526.c2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28352466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28352466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1396-adf8a2324c70788b0a8793fc74d6d91d0ce1f22cb694db73f80a9298f64e8143</originalsourceid><addsrcrecordid>eNpFkLtOwzAART2ARCn8Q8TARIJf9aNbW1EeCmJIJEbLcWwISuNgp1T8PQlF4i53ObrSPQBcIZghiMntevm0ei4zOAXxBZcZJQvMMoNPwAxCjFIhKT0D5zF-jIgUiM_ATdHrodFtUgxj-06H7yT33Vvyqr9sTJouKd6tDsm29Yd4AU6dbqO9_Os5KLd35eYhzV_uHzerPDWISJbq2gmNCaaGQy5EBbXgkjjDac1qiWpoLHIYm4pJWlecOAG1xFI4Rq1AlMzB9XG2D_5zb-Ogdk00tm11Z_0-KizGX5SxEVweQRN8jME61YdmN15QCKrJiVqryYn6d6J-nSiDyQ-mn1aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28352466</pqid></control><display><type>article</type><title>Spatial Stationary Long Waves in Shear Flows</title><source>SpringerLink Journals - AutoHoldings</source><creator>Teshukov, V. M.</creator><creatorcontrib>Teshukov, V. M.</creatorcontrib><description>The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found.</description><identifier>ISSN: 0021-8944</identifier><identifier>DOI: 10.1023/B:JAMT.0000017579.43526.c2</identifier><language>eng</language><ispartof>Journal of applied mechanics and technical physics, 2004-03, Vol.45 (2), p.172-180</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1396-adf8a2324c70788b0a8793fc74d6d91d0ce1f22cb694db73f80a9298f64e8143</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Teshukov, V. M.</creatorcontrib><title>Spatial Stationary Long Waves in Shear Flows</title><title>Journal of applied mechanics and technical physics</title><description>The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found.</description><issn>0021-8944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkLtOwzAART2ARCn8Q8TARIJf9aNbW1EeCmJIJEbLcWwISuNgp1T8PQlF4i53ObrSPQBcIZghiMntevm0ei4zOAXxBZcZJQvMMoNPwAxCjFIhKT0D5zF-jIgUiM_ATdHrodFtUgxj-06H7yT33Vvyqr9sTJouKd6tDsm29Yd4AU6dbqO9_Os5KLd35eYhzV_uHzerPDWISJbq2gmNCaaGQy5EBbXgkjjDac1qiWpoLHIYm4pJWlecOAG1xFI4Rq1AlMzB9XG2D_5zb-Ogdk00tm11Z_0-KizGX5SxEVweQRN8jME61YdmN15QCKrJiVqryYn6d6J-nSiDyQ-mn1aA</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Teshukov, V. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200403</creationdate><title>Spatial Stationary Long Waves in Shear Flows</title><author>Teshukov, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1396-adf8a2324c70788b0a8793fc74d6d91d0ce1f22cb694db73f80a9298f64e8143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teshukov, V. M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teshukov, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Stationary Long Waves in Shear Flows</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><date>2004-03</date><risdate>2004</risdate><volume>45</volume><issue>2</issue><spage>172</spage><epage>180</epage><pages>172-180</pages><issn>0021-8944</issn><abstract>The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found.</abstract><doi>10.1023/B:JAMT.0000017579.43526.c2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8944 |
ispartof | Journal of applied mechanics and technical physics, 2004-03, Vol.45 (2), p.172-180 |
issn | 0021-8944 |
language | eng |
recordid | cdi_proquest_miscellaneous_28352466 |
source | SpringerLink Journals - AutoHoldings |
title | Spatial Stationary Long Waves in Shear Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Stationary%20Long%20Waves%20in%20Shear%20Flows&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Teshukov,%20V.%20M.&rft.date=2004-03&rft.volume=45&rft.issue=2&rft.spage=172&rft.epage=180&rft.pages=172-180&rft.issn=0021-8944&rft_id=info:doi/10.1023/B:JAMT.0000017579.43526.c2&rft_dat=%3Cproquest_cross%3E28352466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28352466&rft_id=info:pmid/&rfr_iscdi=true |