Spatial Stationary Long Waves in Shear Flows

The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2004-03, Vol.45 (2), p.172-180
1. Verfasser: Teshukov, V. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 172
container_title Journal of applied mechanics and technical physics
container_volume 45
creator Teshukov, V. M.
description The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found.
doi_str_mv 10.1023/B:JAMT.0000017579.43526.c2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28352466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28352466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1396-adf8a2324c70788b0a8793fc74d6d91d0ce1f22cb694db73f80a9298f64e8143</originalsourceid><addsrcrecordid>eNpFkLtOwzAART2ARCn8Q8TARIJf9aNbW1EeCmJIJEbLcWwISuNgp1T8PQlF4i53ObrSPQBcIZghiMntevm0ei4zOAXxBZcZJQvMMoNPwAxCjFIhKT0D5zF-jIgUiM_ATdHrodFtUgxj-06H7yT33Vvyqr9sTJouKd6tDsm29Yd4AU6dbqO9_Os5KLd35eYhzV_uHzerPDWISJbq2gmNCaaGQy5EBbXgkjjDac1qiWpoLHIYm4pJWlecOAG1xFI4Rq1AlMzB9XG2D_5zb-Ogdk00tm11Z_0-KizGX5SxEVweQRN8jME61YdmN15QCKrJiVqryYn6d6J-nSiDyQ-mn1aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28352466</pqid></control><display><type>article</type><title>Spatial Stationary Long Waves in Shear Flows</title><source>SpringerLink Journals - AutoHoldings</source><creator>Teshukov, V. M.</creator><creatorcontrib>Teshukov, V. M.</creatorcontrib><description>The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found.</description><identifier>ISSN: 0021-8944</identifier><identifier>DOI: 10.1023/B:JAMT.0000017579.43526.c2</identifier><language>eng</language><ispartof>Journal of applied mechanics and technical physics, 2004-03, Vol.45 (2), p.172-180</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1396-adf8a2324c70788b0a8793fc74d6d91d0ce1f22cb694db73f80a9298f64e8143</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Teshukov, V. M.</creatorcontrib><title>Spatial Stationary Long Waves in Shear Flows</title><title>Journal of applied mechanics and technical physics</title><description>The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found.</description><issn>0021-8944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkLtOwzAART2ARCn8Q8TARIJf9aNbW1EeCmJIJEbLcWwISuNgp1T8PQlF4i53ObrSPQBcIZghiMntevm0ei4zOAXxBZcZJQvMMoNPwAxCjFIhKT0D5zF-jIgUiM_ATdHrodFtUgxj-06H7yT33Vvyqr9sTJouKd6tDsm29Yd4AU6dbqO9_Os5KLd35eYhzV_uHzerPDWISJbq2gmNCaaGQy5EBbXgkjjDac1qiWpoLHIYm4pJWlecOAG1xFI4Rq1AlMzB9XG2D_5zb-Ogdk00tm11Z_0-KizGX5SxEVweQRN8jME61YdmN15QCKrJiVqryYn6d6J-nSiDyQ-mn1aA</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Teshukov, V. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200403</creationdate><title>Spatial Stationary Long Waves in Shear Flows</title><author>Teshukov, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1396-adf8a2324c70788b0a8793fc74d6d91d0ce1f22cb694db73f80a9298f64e8143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teshukov, V. M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teshukov, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Stationary Long Waves in Shear Flows</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><date>2004-03</date><risdate>2004</risdate><volume>45</volume><issue>2</issue><spage>172</spage><epage>180</epage><pages>172-180</pages><issn>0021-8944</issn><abstract>The system of integrodifferential equations describing the spatial stationary free-boundary shear flows of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found.</abstract><doi>10.1023/B:JAMT.0000017579.43526.c2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2004-03, Vol.45 (2), p.172-180
issn 0021-8944
language eng
recordid cdi_proquest_miscellaneous_28352466
source SpringerLink Journals - AutoHoldings
title Spatial Stationary Long Waves in Shear Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Stationary%20Long%20Waves%20in%20Shear%20Flows&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Teshukov,%20V.%20M.&rft.date=2004-03&rft.volume=45&rft.issue=2&rft.spage=172&rft.epage=180&rft.pages=172-180&rft.issn=0021-8944&rft_id=info:doi/10.1023/B:JAMT.0000017579.43526.c2&rft_dat=%3Cproquest_cross%3E28352466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28352466&rft_id=info:pmid/&rfr_iscdi=true