Optimal design of EMAT transmitters

A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NDT & E international : independent nondestructive testing and evaluation 2004-04, Vol.37 (3), p.181-193
Hauptverfasser: Mirkhani, Koorosh, Chaggares, Chris, Masterson, Chris, Jastrzebski, Maciej, Dusatko, Tomas, Sinclair, Anthony, Shapoorabadi, Reza Jafari, Konrad, Adalbert, Papini, Marcello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 3
container_start_page 181
container_title NDT & E international : independent nondestructive testing and evaluation
container_volume 37
creator Mirkhani, Koorosh
Chaggares, Chris
Masterson, Chris
Jastrzebski, Maciej
Dusatko, Tomas
Sinclair, Anthony
Shapoorabadi, Reza Jafari
Konrad, Adalbert
Papini, Marcello
description A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux density are calculated and then incorporated in the determination of body forces, (b) an improved model of the electromagnetic induction phenomenon is formulated, allowing a more accurate evaluation of the ultrasonic pulse launched by an EMAT transmitter and (c) results from the model are compared directly with experimental measurements, yielding discrepancies of the order of 15% in the amplitude of the ultrasonic pulse. The new model is used to optimize the design of the EMAT system. In particular, a parametric study was conducted on the effects of varying an EMAT's magnet-to-coil width ratio. For the EMAT configuration considered, significant improvements can be achieved in the ultrasonic beam amplitude and profile by increasing the ratio to about 1.2; further increases in magnet dimensions yield only marginal improvements in the ultrasonic beam, at the cost of excessive EMAT size.
doi_str_mv 10.1016/j.ndteint.2003.09.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28349603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869503001294</els_id><sourcerecordid>28349603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-32ab3b5eaefde7c4e3b6c4701924457c0c2c87e47ba05b3a2c235d1cf325314f3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFZ_ghAQ3SXeeWUmKymlPqDSTV0Pk8mNTEmTOjMV_PemtODS1d185x7OR8gthYICLR83Rd8k9H0qGAAvoCoA5BmZUK2qnFIlzskEqpLnuqzkJbmKcQMATHA1IXerXfJb22UNRv_ZZ0ObLd5n6ywF28etTwlDvCYXre0i3pzulHw8L9bz13y5enmbz5a546VOOWe25rVEi22DygnkdemEAloxIaRy4JjTCoWqLciaW-YYlw11LWeSU9HyKXk4_t2F4WuPMZmtjw67zvY47KNhmouqBD6C8gi6MMQYsDW7MI4IP4aCOSgxG3NSYg5KDFRmVDLm7k8FNjrbteNG5-NfWErBtdQj93TkcFz77TGY6Dz2Dhsf0CXTDP6fpl99iHiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28349603</pqid></control><display><type>article</type><title>Optimal design of EMAT transmitters</title><source>Elsevier ScienceDirect Journals</source><creator>Mirkhani, Koorosh ; Chaggares, Chris ; Masterson, Chris ; Jastrzebski, Maciej ; Dusatko, Tomas ; Sinclair, Anthony ; Shapoorabadi, Reza Jafari ; Konrad, Adalbert ; Papini, Marcello</creator><creatorcontrib>Mirkhani, Koorosh ; Chaggares, Chris ; Masterson, Chris ; Jastrzebski, Maciej ; Dusatko, Tomas ; Sinclair, Anthony ; Shapoorabadi, Reza Jafari ; Konrad, Adalbert ; Papini, Marcello</creatorcontrib><description>A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux density are calculated and then incorporated in the determination of body forces, (b) an improved model of the electromagnetic induction phenomenon is formulated, allowing a more accurate evaluation of the ultrasonic pulse launched by an EMAT transmitter and (c) results from the model are compared directly with experimental measurements, yielding discrepancies of the order of 15% in the amplitude of the ultrasonic pulse. The new model is used to optimize the design of the EMAT system. In particular, a parametric study was conducted on the effects of varying an EMAT's magnet-to-coil width ratio. For the EMAT configuration considered, significant improvements can be achieved in the ultrasonic beam amplitude and profile by increasing the ratio to about 1.2; further increases in magnet dimensions yield only marginal improvements in the ultrasonic beam, at the cost of excessive EMAT size.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2003.09.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; EMAT ; Exact sciences and technology ; Finite element modeling ; Industrial metrology. Testing ; Materials science ; Materials testing ; Mechanical engineering. Machine design ; Non-destructive testing: methods and equipments ; Physics ; Transolver ; Ultrasonic modeling ; Wave propagation</subject><ispartof>NDT &amp; E international : independent nondestructive testing and evaluation, 2004-04, Vol.37 (3), p.181-193</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-32ab3b5eaefde7c4e3b6c4701924457c0c2c87e47ba05b3a2c235d1cf325314f3</citedby><cites>FETCH-LOGICAL-c368t-32ab3b5eaefde7c4e3b6c4701924457c0c2c87e47ba05b3a2c235d1cf325314f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0963869503001294$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15543858$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirkhani, Koorosh</creatorcontrib><creatorcontrib>Chaggares, Chris</creatorcontrib><creatorcontrib>Masterson, Chris</creatorcontrib><creatorcontrib>Jastrzebski, Maciej</creatorcontrib><creatorcontrib>Dusatko, Tomas</creatorcontrib><creatorcontrib>Sinclair, Anthony</creatorcontrib><creatorcontrib>Shapoorabadi, Reza Jafari</creatorcontrib><creatorcontrib>Konrad, Adalbert</creatorcontrib><creatorcontrib>Papini, Marcello</creatorcontrib><title>Optimal design of EMAT transmitters</title><title>NDT &amp; E international : independent nondestructive testing and evaluation</title><description>A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux density are calculated and then incorporated in the determination of body forces, (b) an improved model of the electromagnetic induction phenomenon is formulated, allowing a more accurate evaluation of the ultrasonic pulse launched by an EMAT transmitter and (c) results from the model are compared directly with experimental measurements, yielding discrepancies of the order of 15% in the amplitude of the ultrasonic pulse. The new model is used to optimize the design of the EMAT system. In particular, a parametric study was conducted on the effects of varying an EMAT's magnet-to-coil width ratio. For the EMAT configuration considered, significant improvements can be achieved in the ultrasonic beam amplitude and profile by increasing the ratio to about 1.2; further increases in magnet dimensions yield only marginal improvements in the ultrasonic beam, at the cost of excessive EMAT size.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>EMAT</subject><subject>Exact sciences and technology</subject><subject>Finite element modeling</subject><subject>Industrial metrology. Testing</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Mechanical engineering. Machine design</subject><subject>Non-destructive testing: methods and equipments</subject><subject>Physics</subject><subject>Transolver</subject><subject>Ultrasonic modeling</subject><subject>Wave propagation</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFZ_ghAQ3SXeeWUmKymlPqDSTV0Pk8mNTEmTOjMV_PemtODS1d185x7OR8gthYICLR83Rd8k9H0qGAAvoCoA5BmZUK2qnFIlzskEqpLnuqzkJbmKcQMATHA1IXerXfJb22UNRv_ZZ0ObLd5n6ywF28etTwlDvCYXre0i3pzulHw8L9bz13y5enmbz5a546VOOWe25rVEi22DygnkdemEAloxIaRy4JjTCoWqLciaW-YYlw11LWeSU9HyKXk4_t2F4WuPMZmtjw67zvY47KNhmouqBD6C8gi6MMQYsDW7MI4IP4aCOSgxG3NSYg5KDFRmVDLm7k8FNjrbteNG5-NfWErBtdQj93TkcFz77TGY6Dz2Dhsf0CXTDP6fpl99iHiU</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Mirkhani, Koorosh</creator><creator>Chaggares, Chris</creator><creator>Masterson, Chris</creator><creator>Jastrzebski, Maciej</creator><creator>Dusatko, Tomas</creator><creator>Sinclair, Anthony</creator><creator>Shapoorabadi, Reza Jafari</creator><creator>Konrad, Adalbert</creator><creator>Papini, Marcello</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040401</creationdate><title>Optimal design of EMAT transmitters</title><author>Mirkhani, Koorosh ; Chaggares, Chris ; Masterson, Chris ; Jastrzebski, Maciej ; Dusatko, Tomas ; Sinclair, Anthony ; Shapoorabadi, Reza Jafari ; Konrad, Adalbert ; Papini, Marcello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-32ab3b5eaefde7c4e3b6c4701924457c0c2c87e47ba05b3a2c235d1cf325314f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>EMAT</topic><topic>Exact sciences and technology</topic><topic>Finite element modeling</topic><topic>Industrial metrology. Testing</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Mechanical engineering. Machine design</topic><topic>Non-destructive testing: methods and equipments</topic><topic>Physics</topic><topic>Transolver</topic><topic>Ultrasonic modeling</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirkhani, Koorosh</creatorcontrib><creatorcontrib>Chaggares, Chris</creatorcontrib><creatorcontrib>Masterson, Chris</creatorcontrib><creatorcontrib>Jastrzebski, Maciej</creatorcontrib><creatorcontrib>Dusatko, Tomas</creatorcontrib><creatorcontrib>Sinclair, Anthony</creatorcontrib><creatorcontrib>Shapoorabadi, Reza Jafari</creatorcontrib><creatorcontrib>Konrad, Adalbert</creatorcontrib><creatorcontrib>Papini, Marcello</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirkhani, Koorosh</au><au>Chaggares, Chris</au><au>Masterson, Chris</au><au>Jastrzebski, Maciej</au><au>Dusatko, Tomas</au><au>Sinclair, Anthony</au><au>Shapoorabadi, Reza Jafari</au><au>Konrad, Adalbert</au><au>Papini, Marcello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of EMAT transmitters</atitle><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>37</volume><issue>3</issue><spage>181</spage><epage>193</epage><pages>181-193</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux density are calculated and then incorporated in the determination of body forces, (b) an improved model of the electromagnetic induction phenomenon is formulated, allowing a more accurate evaluation of the ultrasonic pulse launched by an EMAT transmitter and (c) results from the model are compared directly with experimental measurements, yielding discrepancies of the order of 15% in the amplitude of the ultrasonic pulse. The new model is used to optimize the design of the EMAT system. In particular, a parametric study was conducted on the effects of varying an EMAT's magnet-to-coil width ratio. For the EMAT configuration considered, significant improvements can be achieved in the ultrasonic beam amplitude and profile by increasing the ratio to about 1.2; further increases in magnet dimensions yield only marginal improvements in the ultrasonic beam, at the cost of excessive EMAT size.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2003.09.005</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-8695
ispartof NDT & E international : independent nondestructive testing and evaluation, 2004-04, Vol.37 (3), p.181-193
issn 0963-8695
1879-1174
language eng
recordid cdi_proquest_miscellaneous_28349603
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
EMAT
Exact sciences and technology
Finite element modeling
Industrial metrology. Testing
Materials science
Materials testing
Mechanical engineering. Machine design
Non-destructive testing: methods and equipments
Physics
Transolver
Ultrasonic modeling
Wave propagation
title Optimal design of EMAT transmitters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20EMAT%20transmitters&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Mirkhani,%20Koorosh&rft.date=2004-04-01&rft.volume=37&rft.issue=3&rft.spage=181&rft.epage=193&rft.pages=181-193&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2003.09.005&rft_dat=%3Cproquest_cross%3E28349603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28349603&rft_id=info:pmid/&rft_els_id=S0963869503001294&rfr_iscdi=true