Optimal design of EMAT transmitters
A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux densit...
Gespeichert in:
Veröffentlicht in: | NDT & E international : independent nondestructive testing and evaluation 2004-04, Vol.37 (3), p.181-193 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 3 |
container_start_page | 181 |
container_title | NDT & E international : independent nondestructive testing and evaluation |
container_volume | 37 |
creator | Mirkhani, Koorosh Chaggares, Chris Masterson, Chris Jastrzebski, Maciej Dusatko, Tomas Sinclair, Anthony Shapoorabadi, Reza Jafari Konrad, Adalbert Papini, Marcello |
description | A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux density are calculated and then incorporated in the determination of body forces, (b) an improved model of the electromagnetic induction phenomenon is formulated, allowing a more accurate evaluation of the ultrasonic pulse launched by an EMAT transmitter and (c) results from the model are compared directly with experimental measurements, yielding discrepancies of the order of 15% in the amplitude of the ultrasonic pulse. The new model is used to optimize the design of the EMAT system. In particular, a parametric study was conducted on the effects of varying an EMAT's magnet-to-coil width ratio. For the EMAT configuration considered, significant improvements can be achieved in the ultrasonic beam amplitude and profile by increasing the ratio to about 1.2; further increases in magnet dimensions yield only marginal improvements in the ultrasonic beam, at the cost of excessive EMAT size. |
doi_str_mv | 10.1016/j.ndteint.2003.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28349603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869503001294</els_id><sourcerecordid>28349603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-32ab3b5eaefde7c4e3b6c4701924457c0c2c87e47ba05b3a2c235d1cf325314f3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFZ_ghAQ3SXeeWUmKymlPqDSTV0Pk8mNTEmTOjMV_PemtODS1d185x7OR8gthYICLR83Rd8k9H0qGAAvoCoA5BmZUK2qnFIlzskEqpLnuqzkJbmKcQMATHA1IXerXfJb22UNRv_ZZ0ObLd5n6ywF28etTwlDvCYXre0i3pzulHw8L9bz13y5enmbz5a546VOOWe25rVEi22DygnkdemEAloxIaRy4JjTCoWqLciaW-YYlw11LWeSU9HyKXk4_t2F4WuPMZmtjw67zvY47KNhmouqBD6C8gi6MMQYsDW7MI4IP4aCOSgxG3NSYg5KDFRmVDLm7k8FNjrbteNG5-NfWErBtdQj93TkcFz77TGY6Dz2Dhsf0CXTDP6fpl99iHiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28349603</pqid></control><display><type>article</type><title>Optimal design of EMAT transmitters</title><source>Elsevier ScienceDirect Journals</source><creator>Mirkhani, Koorosh ; Chaggares, Chris ; Masterson, Chris ; Jastrzebski, Maciej ; Dusatko, Tomas ; Sinclair, Anthony ; Shapoorabadi, Reza Jafari ; Konrad, Adalbert ; Papini, Marcello</creator><creatorcontrib>Mirkhani, Koorosh ; Chaggares, Chris ; Masterson, Chris ; Jastrzebski, Maciej ; Dusatko, Tomas ; Sinclair, Anthony ; Shapoorabadi, Reza Jafari ; Konrad, Adalbert ; Papini, Marcello</creatorcontrib><description>A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux density are calculated and then incorporated in the determination of body forces, (b) an improved model of the electromagnetic induction phenomenon is formulated, allowing a more accurate evaluation of the ultrasonic pulse launched by an EMAT transmitter and (c) results from the model are compared directly with experimental measurements, yielding discrepancies of the order of 15% in the amplitude of the ultrasonic pulse. The new model is used to optimize the design of the EMAT system. In particular, a parametric study was conducted on the effects of varying an EMAT's magnet-to-coil width ratio. For the EMAT configuration considered, significant improvements can be achieved in the ultrasonic beam amplitude and profile by increasing the ratio to about 1.2; further increases in magnet dimensions yield only marginal improvements in the ultrasonic beam, at the cost of excessive EMAT size.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2003.09.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; EMAT ; Exact sciences and technology ; Finite element modeling ; Industrial metrology. Testing ; Materials science ; Materials testing ; Mechanical engineering. Machine design ; Non-destructive testing: methods and equipments ; Physics ; Transolver ; Ultrasonic modeling ; Wave propagation</subject><ispartof>NDT & E international : independent nondestructive testing and evaluation, 2004-04, Vol.37 (3), p.181-193</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-32ab3b5eaefde7c4e3b6c4701924457c0c2c87e47ba05b3a2c235d1cf325314f3</citedby><cites>FETCH-LOGICAL-c368t-32ab3b5eaefde7c4e3b6c4701924457c0c2c87e47ba05b3a2c235d1cf325314f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0963869503001294$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15543858$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirkhani, Koorosh</creatorcontrib><creatorcontrib>Chaggares, Chris</creatorcontrib><creatorcontrib>Masterson, Chris</creatorcontrib><creatorcontrib>Jastrzebski, Maciej</creatorcontrib><creatorcontrib>Dusatko, Tomas</creatorcontrib><creatorcontrib>Sinclair, Anthony</creatorcontrib><creatorcontrib>Shapoorabadi, Reza Jafari</creatorcontrib><creatorcontrib>Konrad, Adalbert</creatorcontrib><creatorcontrib>Papini, Marcello</creatorcontrib><title>Optimal design of EMAT transmitters</title><title>NDT & E international : independent nondestructive testing and evaluation</title><description>A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux density are calculated and then incorporated in the determination of body forces, (b) an improved model of the electromagnetic induction phenomenon is formulated, allowing a more accurate evaluation of the ultrasonic pulse launched by an EMAT transmitter and (c) results from the model are compared directly with experimental measurements, yielding discrepancies of the order of 15% in the amplitude of the ultrasonic pulse. The new model is used to optimize the design of the EMAT system. In particular, a parametric study was conducted on the effects of varying an EMAT's magnet-to-coil width ratio. For the EMAT configuration considered, significant improvements can be achieved in the ultrasonic beam amplitude and profile by increasing the ratio to about 1.2; further increases in magnet dimensions yield only marginal improvements in the ultrasonic beam, at the cost of excessive EMAT size.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>EMAT</subject><subject>Exact sciences and technology</subject><subject>Finite element modeling</subject><subject>Industrial metrology. Testing</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Mechanical engineering. Machine design</subject><subject>Non-destructive testing: methods and equipments</subject><subject>Physics</subject><subject>Transolver</subject><subject>Ultrasonic modeling</subject><subject>Wave propagation</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFZ_ghAQ3SXeeWUmKymlPqDSTV0Pk8mNTEmTOjMV_PemtODS1d185x7OR8gthYICLR83Rd8k9H0qGAAvoCoA5BmZUK2qnFIlzskEqpLnuqzkJbmKcQMATHA1IXerXfJb22UNRv_ZZ0ObLd5n6ywF28etTwlDvCYXre0i3pzulHw8L9bz13y5enmbz5a546VOOWe25rVEi22DygnkdemEAloxIaRy4JjTCoWqLciaW-YYlw11LWeSU9HyKXk4_t2F4WuPMZmtjw67zvY47KNhmouqBD6C8gi6MMQYsDW7MI4IP4aCOSgxG3NSYg5KDFRmVDLm7k8FNjrbteNG5-NfWErBtdQj93TkcFz77TGY6Dz2Dhsf0CXTDP6fpl99iHiU</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Mirkhani, Koorosh</creator><creator>Chaggares, Chris</creator><creator>Masterson, Chris</creator><creator>Jastrzebski, Maciej</creator><creator>Dusatko, Tomas</creator><creator>Sinclair, Anthony</creator><creator>Shapoorabadi, Reza Jafari</creator><creator>Konrad, Adalbert</creator><creator>Papini, Marcello</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040401</creationdate><title>Optimal design of EMAT transmitters</title><author>Mirkhani, Koorosh ; Chaggares, Chris ; Masterson, Chris ; Jastrzebski, Maciej ; Dusatko, Tomas ; Sinclair, Anthony ; Shapoorabadi, Reza Jafari ; Konrad, Adalbert ; Papini, Marcello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-32ab3b5eaefde7c4e3b6c4701924457c0c2c87e47ba05b3a2c235d1cf325314f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>EMAT</topic><topic>Exact sciences and technology</topic><topic>Finite element modeling</topic><topic>Industrial metrology. Testing</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Mechanical engineering. Machine design</topic><topic>Non-destructive testing: methods and equipments</topic><topic>Physics</topic><topic>Transolver</topic><topic>Ultrasonic modeling</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirkhani, Koorosh</creatorcontrib><creatorcontrib>Chaggares, Chris</creatorcontrib><creatorcontrib>Masterson, Chris</creatorcontrib><creatorcontrib>Jastrzebski, Maciej</creatorcontrib><creatorcontrib>Dusatko, Tomas</creatorcontrib><creatorcontrib>Sinclair, Anthony</creatorcontrib><creatorcontrib>Shapoorabadi, Reza Jafari</creatorcontrib><creatorcontrib>Konrad, Adalbert</creatorcontrib><creatorcontrib>Papini, Marcello</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirkhani, Koorosh</au><au>Chaggares, Chris</au><au>Masterson, Chris</au><au>Jastrzebski, Maciej</au><au>Dusatko, Tomas</au><au>Sinclair, Anthony</au><au>Shapoorabadi, Reza Jafari</au><au>Konrad, Adalbert</au><au>Papini, Marcello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of EMAT transmitters</atitle><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>37</volume><issue>3</issue><spage>181</spage><epage>193</epage><pages>181-193</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>A three-part finite element model is developed that characterizes the ultrasonic pulse produced by an electromagnetic acoustic transducer (EMAT). The model represents several significant improvements over previously published works, as follows: (a) spatial inhomogeneities in the magnetic flux density are calculated and then incorporated in the determination of body forces, (b) an improved model of the electromagnetic induction phenomenon is formulated, allowing a more accurate evaluation of the ultrasonic pulse launched by an EMAT transmitter and (c) results from the model are compared directly with experimental measurements, yielding discrepancies of the order of 15% in the amplitude of the ultrasonic pulse. The new model is used to optimize the design of the EMAT system. In particular, a parametric study was conducted on the effects of varying an EMAT's magnet-to-coil width ratio. For the EMAT configuration considered, significant improvements can be achieved in the ultrasonic beam amplitude and profile by increasing the ratio to about 1.2; further increases in magnet dimensions yield only marginal improvements in the ultrasonic beam, at the cost of excessive EMAT size.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2003.09.005</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-8695 |
ispartof | NDT & E international : independent nondestructive testing and evaluation, 2004-04, Vol.37 (3), p.181-193 |
issn | 0963-8695 1879-1174 |
language | eng |
recordid | cdi_proquest_miscellaneous_28349603 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology EMAT Exact sciences and technology Finite element modeling Industrial metrology. Testing Materials science Materials testing Mechanical engineering. Machine design Non-destructive testing: methods and equipments Physics Transolver Ultrasonic modeling Wave propagation |
title | Optimal design of EMAT transmitters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20EMAT%20transmitters&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Mirkhani,%20Koorosh&rft.date=2004-04-01&rft.volume=37&rft.issue=3&rft.spage=181&rft.epage=193&rft.pages=181-193&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2003.09.005&rft_dat=%3Cproquest_cross%3E28349603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28349603&rft_id=info:pmid/&rft_els_id=S0963869503001294&rfr_iscdi=true |