A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production

Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2023-01, Vol.326, p.116717-116717, Article 116717
Hauptverfasser: Papadopoulos, Konstantinos P., Economou, Christina N., Stefanidou, Natassa, Moustaka-Gouni, Maria, Genitsaris, Savvas, Aggelis, George, Tekerlekopoulou, Athanasia G., Vayenas, Dimitris V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116717
container_issue
container_start_page 116717
container_title Journal of environmental management
container_volume 326
creator Papadopoulos, Konstantinos P.
Economou, Christina N.
Stefanidou, Natassa
Moustaka-Gouni, Maria
Genitsaris, Savvas
Aggelis, George
Tekerlekopoulou, Athanasia G.
Vayenas, Dimitris V.
description Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production. •Semi-continuous wastewater treatment using photosynthetic aggregates studied.•Optimal operating conditions (HRT = 4 d, SRT = 10 d) escalated in a 30 L open pond.•Biomass recirculation achieved over 75% pollutant removal and up to 94% settling efficiencies.•Recovered carbohydrate-enriched aggregates converted to bioethanol.
doi_str_mv 10.1016/j.jenvman.2022.116717
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834277158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301479722022903</els_id><sourcerecordid>2834277158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7cf79927066ba2e464e9e934e916cce8b37ba2e00c042d0eb55a5550883e69063</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMcnIOXIJWVtx3ZyQqjiJSFxgbPlOFtwldjFdlrx96QK9152tbszs5oh5IbCkgKVd5vlBv1uMH7JgLElpVJRdUIWFBpR1pLDKVkAB1pWqlHn5CKlDQBwRtWCmIci4eBKG3x2fgxjKkz_ZfqyNTZjdKYv9iZl3JtpKnJEkwf0udjGYDGlwoZx22NX7F3-LloXMH8bH_rDvRttdsFfkbO16RNe__dL8vn0-LF6Kd_en19XD2-l5UrkUtm1ahqmQMrWMKxkhQ02fKpUWot1y9VhD2ChYh1gK4QRQkBdc5QNSH5Jbmfd6fXPiCnrwSWLfW88TrY0q3nFlKKiPg5VvKYNF5ROUDFDbQwpRVzrbXSDib-agj6krzf6P319SF_P6U-8-5mHk-Wdw6iTdegtdi6izboL7ojCH96Skac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738193511</pqid></control><display><type>article</type><title>A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production</title><source>Elsevier ScienceDirect Journals</source><creator>Papadopoulos, Konstantinos P. ; Economou, Christina N. ; Stefanidou, Natassa ; Moustaka-Gouni, Maria ; Genitsaris, Savvas ; Aggelis, George ; Tekerlekopoulou, Athanasia G. ; Vayenas, Dimitris V.</creator><creatorcontrib>Papadopoulos, Konstantinos P. ; Economou, Christina N. ; Stefanidou, Natassa ; Moustaka-Gouni, Maria ; Genitsaris, Savvas ; Aggelis, George ; Tekerlekopoulou, Athanasia G. ; Vayenas, Dimitris V.</creatorcontrib><description>Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production. •Semi-continuous wastewater treatment using photosynthetic aggregates studied.•Optimal operating conditions (HRT = 4 d, SRT = 10 d) escalated in a 30 L open pond.•Biomass recirculation achieved over 75% pollutant removal and up to 94% settling efficiencies.•Recovered carbohydrate-enriched aggregates converted to bioethanol.</description><identifier>ISSN: 0301-4797</identifier><identifier>EISSN: 1095-8630</identifier><identifier>DOI: 10.1016/j.jenvman.2022.116717</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>acid hydrolysis ; activated sludge ; aeration ; algae ; batch systems ; bioethanol ; Bioethanol production ; biomass ; Biomass hydrolysis ; Brewery wastewater ; carbohydrates ; circular economy ; ethanol production ; fermentation ; Filamentous cyanobacteria ; fuel production ; microbial communities ; Pilot scale ; pollution control ; Saccharomyces cerevisiae ; starvation ; wastewater treatment</subject><ispartof>Journal of environmental management, 2023-01, Vol.326, p.116717-116717, Article 116717</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7cf79927066ba2e464e9e934e916cce8b37ba2e00c042d0eb55a5550883e69063</citedby><cites>FETCH-LOGICAL-c375t-7cf79927066ba2e464e9e934e916cce8b37ba2e00c042d0eb55a5550883e69063</cites><orcidid>0000-0003-0585-2571 ; 0000-0002-9444-6403 ; 0000-0003-3392-9054 ; 0000-0002-1200-5592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jenvman.2022.116717$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Papadopoulos, Konstantinos P.</creatorcontrib><creatorcontrib>Economou, Christina N.</creatorcontrib><creatorcontrib>Stefanidou, Natassa</creatorcontrib><creatorcontrib>Moustaka-Gouni, Maria</creatorcontrib><creatorcontrib>Genitsaris, Savvas</creatorcontrib><creatorcontrib>Aggelis, George</creatorcontrib><creatorcontrib>Tekerlekopoulou, Athanasia G.</creatorcontrib><creatorcontrib>Vayenas, Dimitris V.</creatorcontrib><title>A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production</title><title>Journal of environmental management</title><description>Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production. •Semi-continuous wastewater treatment using photosynthetic aggregates studied.•Optimal operating conditions (HRT = 4 d, SRT = 10 d) escalated in a 30 L open pond.•Biomass recirculation achieved over 75% pollutant removal and up to 94% settling efficiencies.•Recovered carbohydrate-enriched aggregates converted to bioethanol.</description><subject>acid hydrolysis</subject><subject>activated sludge</subject><subject>aeration</subject><subject>algae</subject><subject>batch systems</subject><subject>bioethanol</subject><subject>Bioethanol production</subject><subject>biomass</subject><subject>Biomass hydrolysis</subject><subject>Brewery wastewater</subject><subject>carbohydrates</subject><subject>circular economy</subject><subject>ethanol production</subject><subject>fermentation</subject><subject>Filamentous cyanobacteria</subject><subject>fuel production</subject><subject>microbial communities</subject><subject>Pilot scale</subject><subject>pollution control</subject><subject>Saccharomyces cerevisiae</subject><subject>starvation</subject><subject>wastewater treatment</subject><issn>0301-4797</issn><issn>1095-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMcnIOXIJWVtx3ZyQqjiJSFxgbPlOFtwldjFdlrx96QK9152tbszs5oh5IbCkgKVd5vlBv1uMH7JgLElpVJRdUIWFBpR1pLDKVkAB1pWqlHn5CKlDQBwRtWCmIci4eBKG3x2fgxjKkz_ZfqyNTZjdKYv9iZl3JtpKnJEkwf0udjGYDGlwoZx22NX7F3-LloXMH8bH_rDvRttdsFfkbO16RNe__dL8vn0-LF6Kd_en19XD2-l5UrkUtm1ahqmQMrWMKxkhQ02fKpUWot1y9VhD2ChYh1gK4QRQkBdc5QNSH5Jbmfd6fXPiCnrwSWLfW88TrY0q3nFlKKiPg5VvKYNF5ROUDFDbQwpRVzrbXSDib-agj6krzf6P319SF_P6U-8-5mHk-Wdw6iTdegtdi6izboL7ojCH96Skac</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Papadopoulos, Konstantinos P.</creator><creator>Economou, Christina N.</creator><creator>Stefanidou, Natassa</creator><creator>Moustaka-Gouni, Maria</creator><creator>Genitsaris, Savvas</creator><creator>Aggelis, George</creator><creator>Tekerlekopoulou, Athanasia G.</creator><creator>Vayenas, Dimitris V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0585-2571</orcidid><orcidid>https://orcid.org/0000-0002-9444-6403</orcidid><orcidid>https://orcid.org/0000-0003-3392-9054</orcidid><orcidid>https://orcid.org/0000-0002-1200-5592</orcidid></search><sort><creationdate>20230115</creationdate><title>A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production</title><author>Papadopoulos, Konstantinos P. ; Economou, Christina N. ; Stefanidou, Natassa ; Moustaka-Gouni, Maria ; Genitsaris, Savvas ; Aggelis, George ; Tekerlekopoulou, Athanasia G. ; Vayenas, Dimitris V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7cf79927066ba2e464e9e934e916cce8b37ba2e00c042d0eb55a5550883e69063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acid hydrolysis</topic><topic>activated sludge</topic><topic>aeration</topic><topic>algae</topic><topic>batch systems</topic><topic>bioethanol</topic><topic>Bioethanol production</topic><topic>biomass</topic><topic>Biomass hydrolysis</topic><topic>Brewery wastewater</topic><topic>carbohydrates</topic><topic>circular economy</topic><topic>ethanol production</topic><topic>fermentation</topic><topic>Filamentous cyanobacteria</topic><topic>fuel production</topic><topic>microbial communities</topic><topic>Pilot scale</topic><topic>pollution control</topic><topic>Saccharomyces cerevisiae</topic><topic>starvation</topic><topic>wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulos, Konstantinos P.</creatorcontrib><creatorcontrib>Economou, Christina N.</creatorcontrib><creatorcontrib>Stefanidou, Natassa</creatorcontrib><creatorcontrib>Moustaka-Gouni, Maria</creatorcontrib><creatorcontrib>Genitsaris, Savvas</creatorcontrib><creatorcontrib>Aggelis, George</creatorcontrib><creatorcontrib>Tekerlekopoulou, Athanasia G.</creatorcontrib><creatorcontrib>Vayenas, Dimitris V.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of environmental management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadopoulos, Konstantinos P.</au><au>Economou, Christina N.</au><au>Stefanidou, Natassa</au><au>Moustaka-Gouni, Maria</au><au>Genitsaris, Savvas</au><au>Aggelis, George</au><au>Tekerlekopoulou, Athanasia G.</au><au>Vayenas, Dimitris V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production</atitle><jtitle>Journal of environmental management</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>326</volume><spage>116717</spage><epage>116717</epage><pages>116717-116717</pages><artnum>116717</artnum><issn>0301-4797</issn><eissn>1095-8630</eissn><abstract>Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production. •Semi-continuous wastewater treatment using photosynthetic aggregates studied.•Optimal operating conditions (HRT = 4 d, SRT = 10 d) escalated in a 30 L open pond.•Biomass recirculation achieved over 75% pollutant removal and up to 94% settling efficiencies.•Recovered carbohydrate-enriched aggregates converted to bioethanol.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jenvman.2022.116717</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0585-2571</orcidid><orcidid>https://orcid.org/0000-0002-9444-6403</orcidid><orcidid>https://orcid.org/0000-0003-3392-9054</orcidid><orcidid>https://orcid.org/0000-0002-1200-5592</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-4797
ispartof Journal of environmental management, 2023-01, Vol.326, p.116717-116717, Article 116717
issn 0301-4797
1095-8630
language eng
recordid cdi_proquest_miscellaneous_2834277158
source Elsevier ScienceDirect Journals
subjects acid hydrolysis
activated sludge
aeration
algae
batch systems
bioethanol
Bioethanol production
biomass
Biomass hydrolysis
Brewery wastewater
carbohydrates
circular economy
ethanol production
fermentation
Filamentous cyanobacteria
fuel production
microbial communities
Pilot scale
pollution control
Saccharomyces cerevisiae
starvation
wastewater treatment
title A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-continuous%20algal-bacterial%20wastewater%20treatment%20process%20coupled%20with%20bioethanol%20production&rft.jtitle=Journal%20of%20environmental%20management&rft.au=Papadopoulos,%20Konstantinos%20P.&rft.date=2023-01-15&rft.volume=326&rft.spage=116717&rft.epage=116717&rft.pages=116717-116717&rft.artnum=116717&rft.issn=0301-4797&rft.eissn=1095-8630&rft_id=info:doi/10.1016/j.jenvman.2022.116717&rft_dat=%3Cproquest_cross%3E2834277158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738193511&rft_id=info:pmid/&rft_els_id=S0301479722022903&rfr_iscdi=true