A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production
Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregate...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2023-01, Vol.326, p.116717-116717, Article 116717 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116717 |
---|---|
container_issue | |
container_start_page | 116717 |
container_title | Journal of environmental management |
container_volume | 326 |
creator | Papadopoulos, Konstantinos P. Economou, Christina N. Stefanidou, Natassa Moustaka-Gouni, Maria Genitsaris, Savvas Aggelis, George Tekerlekopoulou, Athanasia G. Vayenas, Dimitris V. |
description | Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production.
•Semi-continuous wastewater treatment using photosynthetic aggregates studied.•Optimal operating conditions (HRT = 4 d, SRT = 10 d) escalated in a 30 L open pond.•Biomass recirculation achieved over 75% pollutant removal and up to 94% settling efficiencies.•Recovered carbohydrate-enriched aggregates converted to bioethanol. |
doi_str_mv | 10.1016/j.jenvman.2022.116717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834277158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301479722022903</els_id><sourcerecordid>2834277158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7cf79927066ba2e464e9e934e916cce8b37ba2e00c042d0eb55a5550883e69063</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMcnIOXIJWVtx3ZyQqjiJSFxgbPlOFtwldjFdlrx96QK9152tbszs5oh5IbCkgKVd5vlBv1uMH7JgLElpVJRdUIWFBpR1pLDKVkAB1pWqlHn5CKlDQBwRtWCmIci4eBKG3x2fgxjKkz_ZfqyNTZjdKYv9iZl3JtpKnJEkwf0udjGYDGlwoZx22NX7F3-LloXMH8bH_rDvRttdsFfkbO16RNe__dL8vn0-LF6Kd_en19XD2-l5UrkUtm1ahqmQMrWMKxkhQ02fKpUWot1y9VhD2ChYh1gK4QRQkBdc5QNSH5Jbmfd6fXPiCnrwSWLfW88TrY0q3nFlKKiPg5VvKYNF5ROUDFDbQwpRVzrbXSDib-agj6krzf6P319SF_P6U-8-5mHk-Wdw6iTdegtdi6izboL7ojCH96Skac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738193511</pqid></control><display><type>article</type><title>A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production</title><source>Elsevier ScienceDirect Journals</source><creator>Papadopoulos, Konstantinos P. ; Economou, Christina N. ; Stefanidou, Natassa ; Moustaka-Gouni, Maria ; Genitsaris, Savvas ; Aggelis, George ; Tekerlekopoulou, Athanasia G. ; Vayenas, Dimitris V.</creator><creatorcontrib>Papadopoulos, Konstantinos P. ; Economou, Christina N. ; Stefanidou, Natassa ; Moustaka-Gouni, Maria ; Genitsaris, Savvas ; Aggelis, George ; Tekerlekopoulou, Athanasia G. ; Vayenas, Dimitris V.</creatorcontrib><description>Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production.
•Semi-continuous wastewater treatment using photosynthetic aggregates studied.•Optimal operating conditions (HRT = 4 d, SRT = 10 d) escalated in a 30 L open pond.•Biomass recirculation achieved over 75% pollutant removal and up to 94% settling efficiencies.•Recovered carbohydrate-enriched aggregates converted to bioethanol.</description><identifier>ISSN: 0301-4797</identifier><identifier>EISSN: 1095-8630</identifier><identifier>DOI: 10.1016/j.jenvman.2022.116717</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>acid hydrolysis ; activated sludge ; aeration ; algae ; batch systems ; bioethanol ; Bioethanol production ; biomass ; Biomass hydrolysis ; Brewery wastewater ; carbohydrates ; circular economy ; ethanol production ; fermentation ; Filamentous cyanobacteria ; fuel production ; microbial communities ; Pilot scale ; pollution control ; Saccharomyces cerevisiae ; starvation ; wastewater treatment</subject><ispartof>Journal of environmental management, 2023-01, Vol.326, p.116717-116717, Article 116717</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7cf79927066ba2e464e9e934e916cce8b37ba2e00c042d0eb55a5550883e69063</citedby><cites>FETCH-LOGICAL-c375t-7cf79927066ba2e464e9e934e916cce8b37ba2e00c042d0eb55a5550883e69063</cites><orcidid>0000-0003-0585-2571 ; 0000-0002-9444-6403 ; 0000-0003-3392-9054 ; 0000-0002-1200-5592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jenvman.2022.116717$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Papadopoulos, Konstantinos P.</creatorcontrib><creatorcontrib>Economou, Christina N.</creatorcontrib><creatorcontrib>Stefanidou, Natassa</creatorcontrib><creatorcontrib>Moustaka-Gouni, Maria</creatorcontrib><creatorcontrib>Genitsaris, Savvas</creatorcontrib><creatorcontrib>Aggelis, George</creatorcontrib><creatorcontrib>Tekerlekopoulou, Athanasia G.</creatorcontrib><creatorcontrib>Vayenas, Dimitris V.</creatorcontrib><title>A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production</title><title>Journal of environmental management</title><description>Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production.
•Semi-continuous wastewater treatment using photosynthetic aggregates studied.•Optimal operating conditions (HRT = 4 d, SRT = 10 d) escalated in a 30 L open pond.•Biomass recirculation achieved over 75% pollutant removal and up to 94% settling efficiencies.•Recovered carbohydrate-enriched aggregates converted to bioethanol.</description><subject>acid hydrolysis</subject><subject>activated sludge</subject><subject>aeration</subject><subject>algae</subject><subject>batch systems</subject><subject>bioethanol</subject><subject>Bioethanol production</subject><subject>biomass</subject><subject>Biomass hydrolysis</subject><subject>Brewery wastewater</subject><subject>carbohydrates</subject><subject>circular economy</subject><subject>ethanol production</subject><subject>fermentation</subject><subject>Filamentous cyanobacteria</subject><subject>fuel production</subject><subject>microbial communities</subject><subject>Pilot scale</subject><subject>pollution control</subject><subject>Saccharomyces cerevisiae</subject><subject>starvation</subject><subject>wastewater treatment</subject><issn>0301-4797</issn><issn>1095-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMcnIOXIJWVtx3ZyQqjiJSFxgbPlOFtwldjFdlrx96QK9152tbszs5oh5IbCkgKVd5vlBv1uMH7JgLElpVJRdUIWFBpR1pLDKVkAB1pWqlHn5CKlDQBwRtWCmIci4eBKG3x2fgxjKkz_ZfqyNTZjdKYv9iZl3JtpKnJEkwf0udjGYDGlwoZx22NX7F3-LloXMH8bH_rDvRttdsFfkbO16RNe__dL8vn0-LF6Kd_en19XD2-l5UrkUtm1ahqmQMrWMKxkhQ02fKpUWot1y9VhD2ChYh1gK4QRQkBdc5QNSH5Jbmfd6fXPiCnrwSWLfW88TrY0q3nFlKKiPg5VvKYNF5ROUDFDbQwpRVzrbXSDib-agj6krzf6P319SF_P6U-8-5mHk-Wdw6iTdegtdi6izboL7ojCH96Skac</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Papadopoulos, Konstantinos P.</creator><creator>Economou, Christina N.</creator><creator>Stefanidou, Natassa</creator><creator>Moustaka-Gouni, Maria</creator><creator>Genitsaris, Savvas</creator><creator>Aggelis, George</creator><creator>Tekerlekopoulou, Athanasia G.</creator><creator>Vayenas, Dimitris V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0585-2571</orcidid><orcidid>https://orcid.org/0000-0002-9444-6403</orcidid><orcidid>https://orcid.org/0000-0003-3392-9054</orcidid><orcidid>https://orcid.org/0000-0002-1200-5592</orcidid></search><sort><creationdate>20230115</creationdate><title>A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production</title><author>Papadopoulos, Konstantinos P. ; Economou, Christina N. ; Stefanidou, Natassa ; Moustaka-Gouni, Maria ; Genitsaris, Savvas ; Aggelis, George ; Tekerlekopoulou, Athanasia G. ; Vayenas, Dimitris V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7cf79927066ba2e464e9e934e916cce8b37ba2e00c042d0eb55a5550883e69063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acid hydrolysis</topic><topic>activated sludge</topic><topic>aeration</topic><topic>algae</topic><topic>batch systems</topic><topic>bioethanol</topic><topic>Bioethanol production</topic><topic>biomass</topic><topic>Biomass hydrolysis</topic><topic>Brewery wastewater</topic><topic>carbohydrates</topic><topic>circular economy</topic><topic>ethanol production</topic><topic>fermentation</topic><topic>Filamentous cyanobacteria</topic><topic>fuel production</topic><topic>microbial communities</topic><topic>Pilot scale</topic><topic>pollution control</topic><topic>Saccharomyces cerevisiae</topic><topic>starvation</topic><topic>wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulos, Konstantinos P.</creatorcontrib><creatorcontrib>Economou, Christina N.</creatorcontrib><creatorcontrib>Stefanidou, Natassa</creatorcontrib><creatorcontrib>Moustaka-Gouni, Maria</creatorcontrib><creatorcontrib>Genitsaris, Savvas</creatorcontrib><creatorcontrib>Aggelis, George</creatorcontrib><creatorcontrib>Tekerlekopoulou, Athanasia G.</creatorcontrib><creatorcontrib>Vayenas, Dimitris V.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of environmental management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadopoulos, Konstantinos P.</au><au>Economou, Christina N.</au><au>Stefanidou, Natassa</au><au>Moustaka-Gouni, Maria</au><au>Genitsaris, Savvas</au><au>Aggelis, George</au><au>Tekerlekopoulou, Athanasia G.</au><au>Vayenas, Dimitris V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production</atitle><jtitle>Journal of environmental management</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>326</volume><spage>116717</spage><epage>116717</epage><pages>116717-116717</pages><artnum>116717</artnum><issn>0301-4797</issn><eissn>1095-8630</eissn><abstract>Harnessing the biomass energy potential through biofuel production offers new outlets for a circular economy. In this study an integrated system which combine brewery wastewater treatment using algal-bacterial aggregates instead of activated sludge was developed. The use of algal-bacterial aggregates can eliminate the aeration requirements and significantly reduce the high biomass harvesting costs associated with algal monocultures. A sequencing batch reactor (SBR) setup operating with and without biomass recirculation was used to investigate pollutant removal rates, aggregation capacity and microbial community characteristics under a range of hydraulic retention times (HRTs) and solid retention times (SRTs). It was observed that biomass recirculation strategy significantly enhanced aggregation and pollutant removal (i.e., 78.7%, 94.2% and 75.2% for d-COD, TKN, and PO43--P, respectively). The microbial community established was highly diverse consisting of 161 Bacterial Operational Taxonomic Units (B-OTUs) and 16 unicellular Eukaryotic OTUs (E-OTUs). Escalation the optimal conditions (i.e., HRT = 4 d, SRT = 10 d) at pilot-scale resulted in nutrient starvation leading to 38–44% w/w carbohydrate accumulation. The harvested biomass was converted to bioethanol after acid hydrolysis followed by fermentation with Saccharomyces cerevisiae achieving a bioethanol production yield of 0.076 g bioethanol/g biomass. These data suggest that bioethanol production coupled with high-performance wastewater treatment using algal-bacterial aggregates is feasible, albeit less productive concerning bioethanol yields than systems exclusively designed for third and fourth-generation biofuel production.
•Semi-continuous wastewater treatment using photosynthetic aggregates studied.•Optimal operating conditions (HRT = 4 d, SRT = 10 d) escalated in a 30 L open pond.•Biomass recirculation achieved over 75% pollutant removal and up to 94% settling efficiencies.•Recovered carbohydrate-enriched aggregates converted to bioethanol.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jenvman.2022.116717</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0585-2571</orcidid><orcidid>https://orcid.org/0000-0002-9444-6403</orcidid><orcidid>https://orcid.org/0000-0003-3392-9054</orcidid><orcidid>https://orcid.org/0000-0002-1200-5592</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4797 |
ispartof | Journal of environmental management, 2023-01, Vol.326, p.116717-116717, Article 116717 |
issn | 0301-4797 1095-8630 |
language | eng |
recordid | cdi_proquest_miscellaneous_2834277158 |
source | Elsevier ScienceDirect Journals |
subjects | acid hydrolysis activated sludge aeration algae batch systems bioethanol Bioethanol production biomass Biomass hydrolysis Brewery wastewater carbohydrates circular economy ethanol production fermentation Filamentous cyanobacteria fuel production microbial communities Pilot scale pollution control Saccharomyces cerevisiae starvation wastewater treatment |
title | A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-continuous%20algal-bacterial%20wastewater%20treatment%20process%20coupled%20with%20bioethanol%20production&rft.jtitle=Journal%20of%20environmental%20management&rft.au=Papadopoulos,%20Konstantinos%20P.&rft.date=2023-01-15&rft.volume=326&rft.spage=116717&rft.epage=116717&rft.pages=116717-116717&rft.artnum=116717&rft.issn=0301-4797&rft.eissn=1095-8630&rft_id=info:doi/10.1016/j.jenvman.2022.116717&rft_dat=%3Cproquest_cross%3E2834277158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738193511&rft_id=info:pmid/&rft_els_id=S0301479722022903&rfr_iscdi=true |