Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome
Key message We identified and integrated the novel FHB-resistant Fhb7 The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived ( Thinopyrum elongatum , genome EE) Fhb7 allele, designated Fhb...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2022-12, Vol.135 (12), p.4409-4419 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4419 |
---|---|
container_issue | 12 |
container_start_page | 4409 |
container_title | Theoretical and applied genetics |
container_volume | 135 |
creator | Zhang, Wei Danilova, Tatiana Zhang, Mingyi Ren, Shuangfeng Zhu, Xianwen Zhang, Qijun Zhong, Shaobin Dykes, Linda Fiedler, Jason Xu, Steven Frels, Katherine Wegulo, Stephen Boehm, Jeffrey Cai, Xiwen |
description | Key message
We identified and integrated the novel FHB-resistant
Fhb7
The2
allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag.
A novel tall wheatgrass-derived (
Thinopyrum elongatum
, genome EE)
Fhb7
allele, designated
Fhb7
The2
, was identified and integrated into the wheat B genome through a small 7B–7E translocation (7BS·7BL–7EL) involving the terminal regions of the long arms.
Fhb7
The2
conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of
Fhb7
The2
into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other
Fhb7
introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that
Fhb7
The2
does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid
Th. ponticum
-derived
Fhb7
allele
Fhb7
Thp
. This will further improve the utility of
Fhb7
The2
in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in
Fhb7
The2
,
Fhb7
Thp
, and another
Th. elongatum
-derived
Fhb7
allele
Fhb7
The1
, which led to seven amino acid conversions in Fhb7
The2
, Fhb7
Thp
, and Fhb7
The1
, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for
Fhb7
The2
. The 7EL segment containing
Fhb7
The2
in the translocation chromosome 7BS·7BL–7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for
Fhb7
The2
introgression, pyramiding, and deployment in wheat germplasm and varieties. |
doi_str_mv | 10.1007/s00122-022-04228-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834271906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729556364</galeid><sourcerecordid>A729556364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-bf615c4bb2d52ba601ad120890a0edae7a8179247f927852ad562d121bc0351a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhD3BAlrjAIWU8juPk2K4oVKqExMfZcpLJbqqsXWxnof31dZRCtQiBrJFHM8-80thvlr3kcMIB1LsAwBFzmKNArHLxKFvxQmCOWODjbAVQQC6VxKPsWQhXAIASxNPsSJQIHLBcZfv1TXQbshSHlhnbsZS7XcrbrfGmjeSHWxMHZ5nrmWHW7Wlk0Ywj-7ElEzfehJB3idpTx863jWKpRyOxwUZK3ZjKKXULzs4WfXqePenNGOjF_X2cfTt__3X9Mb_89OFifXqZtxLqmDd9yWVbNA12EhtTAjcdR6hqMECdIWUqrmosVF-jqiSaTpaYCN60ICQ34jh7s-hee_d9ohD1bggtjaOx5KagsRIFKl5D-X9UIQouOM7o6z_QKzd5mxZJVFGVWCuOD9TGjKQH27uYXnQW1acKaylLURaJOvkLlU5H6RucpX5I9YOBtwcDiYn0M27MFIK--PL5kMWFbb0LwVOvr_2wM_5Gc9Czh_TiIQ1zzB7SIg29ut9uanbU_R75ZZoEiAUIqWU35B_W_4fsHZ2Izi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748629712</pqid></control><display><type>article</type><title>Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Wei ; Danilova, Tatiana ; Zhang, Mingyi ; Ren, Shuangfeng ; Zhu, Xianwen ; Zhang, Qijun ; Zhong, Shaobin ; Dykes, Linda ; Fiedler, Jason ; Xu, Steven ; Frels, Katherine ; Wegulo, Stephen ; Boehm, Jeffrey ; Cai, Xiwen</creator><creatorcontrib>Zhang, Wei ; Danilova, Tatiana ; Zhang, Mingyi ; Ren, Shuangfeng ; Zhu, Xianwen ; Zhang, Qijun ; Zhong, Shaobin ; Dykes, Linda ; Fiedler, Jason ; Xu, Steven ; Frels, Katherine ; Wegulo, Stephen ; Boehm, Jeffrey ; Cai, Xiwen</creatorcontrib><description>Key message
We identified and integrated the novel FHB-resistant
Fhb7
The2
allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag.
A novel tall wheatgrass-derived (
Thinopyrum elongatum
, genome EE)
Fhb7
allele, designated
Fhb7
The2
, was identified and integrated into the wheat B genome through a small 7B–7E translocation (7BS·7BL–7EL) involving the terminal regions of the long arms.
Fhb7
The2
conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of
Fhb7
The2
into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other
Fhb7
introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that
Fhb7
The2
does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid
Th. ponticum
-derived
Fhb7
allele
Fhb7
Thp
. This will further improve the utility of
Fhb7
The2
in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in
Fhb7
The2
,
Fhb7
Thp
, and another
Th. elongatum
-derived
Fhb7
allele
Fhb7
The1
, which led to seven amino acid conversions in Fhb7
The2
, Fhb7
Thp
, and Fhb7
The1
, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for
Fhb7
The2
. The 7EL segment containing
Fhb7
The2
in the translocation chromosome 7BS·7BL–7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for
Fhb7
The2
introgression, pyramiding, and deployment in wheat germplasm and varieties.</description><identifier>ISSN: 0040-5752</identifier><identifier>ISSN: 1432-2242</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04228-3</identifier><identifier>PMID: 36201026</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alleles ; Allelomorphism ; Amino acids ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome 7 ; chromosomes ; Control ; Cytogenetics ; Disease resistance ; Disease Resistance - genetics ; Diseases and pests ; durum wheat ; Fungal diseases of plants ; Fusarium ; Fusarium head blight ; Genetic aspects ; Genetic research ; Genomes ; Genomics ; Germplasm ; Glutathione ; Glutathione transferase ; Heredity ; Identification and classification ; introgression ; Life Sciences ; Marker-assisted selection ; Methods ; Nucleotide sequence ; Original Article ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Genetics and Genomics ; Plant immunology ; Poaceae - genetics ; Production processes ; resistance genes ; Sequence analysis ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Structure ; Thinopyrum elongatum ; Thinopyrum ponticum ; Triticum - genetics ; Triticum durum ; Wheat ; Wheatgrasses</subject><ispartof>Theoretical and applied genetics, 2022-12, Vol.135 (12), p.4409-4419</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</rights><rights>2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-bf615c4bb2d52ba601ad120890a0edae7a8179247f927852ad562d121bc0351a3</citedby><cites>FETCH-LOGICAL-c509t-bf615c4bb2d52ba601ad120890a0edae7a8179247f927852ad562d121bc0351a3</cites><orcidid>0000-0002-3937-1074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04228-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04228-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36201026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Danilova, Tatiana</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Ren, Shuangfeng</creatorcontrib><creatorcontrib>Zhu, Xianwen</creatorcontrib><creatorcontrib>Zhang, Qijun</creatorcontrib><creatorcontrib>Zhong, Shaobin</creatorcontrib><creatorcontrib>Dykes, Linda</creatorcontrib><creatorcontrib>Fiedler, Jason</creatorcontrib><creatorcontrib>Xu, Steven</creatorcontrib><creatorcontrib>Frels, Katherine</creatorcontrib><creatorcontrib>Wegulo, Stephen</creatorcontrib><creatorcontrib>Boehm, Jeffrey</creatorcontrib><creatorcontrib>Cai, Xiwen</creatorcontrib><title>Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
We identified and integrated the novel FHB-resistant
Fhb7
The2
allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag.
A novel tall wheatgrass-derived (
Thinopyrum elongatum
, genome EE)
Fhb7
allele, designated
Fhb7
The2
, was identified and integrated into the wheat B genome through a small 7B–7E translocation (7BS·7BL–7EL) involving the terminal regions of the long arms.
Fhb7
The2
conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of
Fhb7
The2
into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other
Fhb7
introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that
Fhb7
The2
does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid
Th. ponticum
-derived
Fhb7
allele
Fhb7
Thp
. This will further improve the utility of
Fhb7
The2
in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in
Fhb7
The2
,
Fhb7
Thp
, and another
Th. elongatum
-derived
Fhb7
allele
Fhb7
The1
, which led to seven amino acid conversions in Fhb7
The2
, Fhb7
Thp
, and Fhb7
The1
, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for
Fhb7
The2
. The 7EL segment containing
Fhb7
The2
in the translocation chromosome 7BS·7BL–7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for
Fhb7
The2
introgression, pyramiding, and deployment in wheat germplasm and varieties.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Allelomorphism</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome 7</subject><subject>chromosomes</subject><subject>Control</subject><subject>Cytogenetics</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>durum wheat</subject><subject>Fungal diseases of plants</subject><subject>Fusarium</subject><subject>Fusarium head blight</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germplasm</subject><subject>Glutathione</subject><subject>Glutathione transferase</subject><subject>Heredity</subject><subject>Identification and classification</subject><subject>introgression</subject><subject>Life Sciences</subject><subject>Marker-assisted selection</subject><subject>Methods</subject><subject>Nucleotide sequence</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunology</subject><subject>Poaceae - genetics</subject><subject>Production processes</subject><subject>resistance genes</subject><subject>Sequence analysis</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Structure</subject><subject>Thinopyrum elongatum</subject><subject>Thinopyrum ponticum</subject><subject>Triticum - genetics</subject><subject>Triticum durum</subject><subject>Wheat</subject><subject>Wheatgrasses</subject><issn>0040-5752</issn><issn>1432-2242</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1v1DAQhiMEokvhD3BAlrjAIWU8juPk2K4oVKqExMfZcpLJbqqsXWxnof31dZRCtQiBrJFHM8-80thvlr3kcMIB1LsAwBFzmKNArHLxKFvxQmCOWODjbAVQQC6VxKPsWQhXAIASxNPsSJQIHLBcZfv1TXQbshSHlhnbsZS7XcrbrfGmjeSHWxMHZ5nrmWHW7Wlk0Ywj-7ElEzfehJB3idpTx863jWKpRyOxwUZK3ZjKKXULzs4WfXqePenNGOjF_X2cfTt__3X9Mb_89OFifXqZtxLqmDd9yWVbNA12EhtTAjcdR6hqMECdIWUqrmosVF-jqiSaTpaYCN60ICQ34jh7s-hee_d9ohD1bggtjaOx5KagsRIFKl5D-X9UIQouOM7o6z_QKzd5mxZJVFGVWCuOD9TGjKQH27uYXnQW1acKaylLURaJOvkLlU5H6RucpX5I9YOBtwcDiYn0M27MFIK--PL5kMWFbb0LwVOvr_2wM_5Gc9Czh_TiIQ1zzB7SIg29ut9uanbU_R75ZZoEiAUIqWU35B_W_4fsHZ2Izi4</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Wei</creator><creator>Danilova, Tatiana</creator><creator>Zhang, Mingyi</creator><creator>Ren, Shuangfeng</creator><creator>Zhu, Xianwen</creator><creator>Zhang, Qijun</creator><creator>Zhong, Shaobin</creator><creator>Dykes, Linda</creator><creator>Fiedler, Jason</creator><creator>Xu, Steven</creator><creator>Frels, Katherine</creator><creator>Wegulo, Stephen</creator><creator>Boehm, Jeffrey</creator><creator>Cai, Xiwen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3937-1074</orcidid></search><sort><creationdate>20221201</creationdate><title>Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome</title><author>Zhang, Wei ; Danilova, Tatiana ; Zhang, Mingyi ; Ren, Shuangfeng ; Zhu, Xianwen ; Zhang, Qijun ; Zhong, Shaobin ; Dykes, Linda ; Fiedler, Jason ; Xu, Steven ; Frels, Katherine ; Wegulo, Stephen ; Boehm, Jeffrey ; Cai, Xiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-bf615c4bb2d52ba601ad120890a0edae7a8179247f927852ad562d121bc0351a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Allelomorphism</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome 7</topic><topic>chromosomes</topic><topic>Control</topic><topic>Cytogenetics</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>durum wheat</topic><topic>Fungal diseases of plants</topic><topic>Fusarium</topic><topic>Fusarium head blight</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germplasm</topic><topic>Glutathione</topic><topic>Glutathione transferase</topic><topic>Heredity</topic><topic>Identification and classification</topic><topic>introgression</topic><topic>Life Sciences</topic><topic>Marker-assisted selection</topic><topic>Methods</topic><topic>Nucleotide sequence</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunology</topic><topic>Poaceae - genetics</topic><topic>Production processes</topic><topic>resistance genes</topic><topic>Sequence analysis</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Structure</topic><topic>Thinopyrum elongatum</topic><topic>Thinopyrum ponticum</topic><topic>Triticum - genetics</topic><topic>Triticum durum</topic><topic>Wheat</topic><topic>Wheatgrasses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Danilova, Tatiana</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Ren, Shuangfeng</creatorcontrib><creatorcontrib>Zhu, Xianwen</creatorcontrib><creatorcontrib>Zhang, Qijun</creatorcontrib><creatorcontrib>Zhong, Shaobin</creatorcontrib><creatorcontrib>Dykes, Linda</creatorcontrib><creatorcontrib>Fiedler, Jason</creatorcontrib><creatorcontrib>Xu, Steven</creatorcontrib><creatorcontrib>Frels, Katherine</creatorcontrib><creatorcontrib>Wegulo, Stephen</creatorcontrib><creatorcontrib>Boehm, Jeffrey</creatorcontrib><creatorcontrib>Cai, Xiwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Danilova, Tatiana</au><au>Zhang, Mingyi</au><au>Ren, Shuangfeng</au><au>Zhu, Xianwen</au><au>Zhang, Qijun</au><au>Zhong, Shaobin</au><au>Dykes, Linda</au><au>Fiedler, Jason</au><au>Xu, Steven</au><au>Frels, Katherine</au><au>Wegulo, Stephen</au><au>Boehm, Jeffrey</au><au>Cai, Xiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>135</volume><issue>12</issue><spage>4409</spage><epage>4419</epage><pages>4409-4419</pages><issn>0040-5752</issn><issn>1432-2242</issn><eissn>1432-2242</eissn><abstract>Key message
We identified and integrated the novel FHB-resistant
Fhb7
The2
allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag.
A novel tall wheatgrass-derived (
Thinopyrum elongatum
, genome EE)
Fhb7
allele, designated
Fhb7
The2
, was identified and integrated into the wheat B genome through a small 7B–7E translocation (7BS·7BL–7EL) involving the terminal regions of the long arms.
Fhb7
The2
conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of
Fhb7
The2
into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other
Fhb7
introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that
Fhb7
The2
does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid
Th. ponticum
-derived
Fhb7
allele
Fhb7
Thp
. This will further improve the utility of
Fhb7
The2
in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in
Fhb7
The2
,
Fhb7
Thp
, and another
Th. elongatum
-derived
Fhb7
allele
Fhb7
The1
, which led to seven amino acid conversions in Fhb7
The2
, Fhb7
Thp
, and Fhb7
The1
, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for
Fhb7
The2
. The 7EL segment containing
Fhb7
The2
in the translocation chromosome 7BS·7BL–7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for
Fhb7
The2
introgression, pyramiding, and deployment in wheat germplasm and varieties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36201026</pmid><doi>10.1007/s00122-022-04228-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3937-1074</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2022-12, Vol.135 (12), p.4409-4419 |
issn | 0040-5752 1432-2242 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2834271906 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Alleles Allelomorphism Amino acids Biochemistry Biomedical and Life Sciences Biotechnology Chromosome 7 chromosomes Control Cytogenetics Disease resistance Disease Resistance - genetics Diseases and pests durum wheat Fungal diseases of plants Fusarium Fusarium head blight Genetic aspects Genetic research Genomes Genomics Germplasm Glutathione Glutathione transferase Heredity Identification and classification introgression Life Sciences Marker-assisted selection Methods Nucleotide sequence Original Article Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Genetics and Genomics Plant immunology Poaceae - genetics Production processes resistance genes Sequence analysis Single nucleotide polymorphisms Single-nucleotide polymorphism Structure Thinopyrum elongatum Thinopyrum ponticum Triticum - genetics Triticum durum Wheat Wheatgrasses |
title | Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytogenetic%20and%20genomic%20characterization%20of%20a%20novel%20tall%20wheatgrass-derived%20Fhb7%20allele%20integrated%20into%20wheat%20B%20genome&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Zhang,%20Wei&rft.date=2022-12-01&rft.volume=135&rft.issue=12&rft.spage=4409&rft.epage=4419&rft.pages=4409-4419&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04228-3&rft_dat=%3Cgale_proqu%3EA729556364%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748629712&rft_id=info:pmid/36201026&rft_galeid=A729556364&rfr_iscdi=true |