Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome

Key message We identified and integrated the novel FHB-resistant Fhb7 The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived ( Thinopyrum elongatum , genome EE) Fhb7 allele, designated Fhb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2022-12, Vol.135 (12), p.4409-4419
Hauptverfasser: Zhang, Wei, Danilova, Tatiana, Zhang, Mingyi, Ren, Shuangfeng, Zhu, Xianwen, Zhang, Qijun, Zhong, Shaobin, Dykes, Linda, Fiedler, Jason, Xu, Steven, Frels, Katherine, Wegulo, Stephen, Boehm, Jeffrey, Cai, Xiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4419
container_issue 12
container_start_page 4409
container_title Theoretical and applied genetics
container_volume 135
creator Zhang, Wei
Danilova, Tatiana
Zhang, Mingyi
Ren, Shuangfeng
Zhu, Xianwen
Zhang, Qijun
Zhong, Shaobin
Dykes, Linda
Fiedler, Jason
Xu, Steven
Frels, Katherine
Wegulo, Stephen
Boehm, Jeffrey
Cai, Xiwen
description Key message We identified and integrated the novel FHB-resistant Fhb7 The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived ( Thinopyrum elongatum , genome EE) Fhb7 allele, designated Fhb7 The2 , was identified and integrated into the wheat B genome through a small 7B–7E translocation (7BS·7BL–7EL) involving the terminal regions of the long arms. Fhb7 The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7 The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7 The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum -derived Fhb7 allele Fhb7 Thp . This will further improve the utility of Fhb7 The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7 The2 , Fhb7 Thp , and another Th. elongatum -derived Fhb7 allele Fhb7 The1 , which led to seven amino acid conversions in Fhb7 The2 , Fhb7 Thp , and Fhb7 The1 , respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7 The2 . The 7EL segment containing Fhb7 The2 in the translocation chromosome 7BS·7BL–7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7 The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.
doi_str_mv 10.1007/s00122-022-04228-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834271906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729556364</galeid><sourcerecordid>A729556364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-bf615c4bb2d52ba601ad120890a0edae7a8179247f927852ad562d121bc0351a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhD3BAlrjAIWU8juPk2K4oVKqExMfZcpLJbqqsXWxnof31dZRCtQiBrJFHM8-80thvlr3kcMIB1LsAwBFzmKNArHLxKFvxQmCOWODjbAVQQC6VxKPsWQhXAIASxNPsSJQIHLBcZfv1TXQbshSHlhnbsZS7XcrbrfGmjeSHWxMHZ5nrmWHW7Wlk0Ywj-7ElEzfehJB3idpTx863jWKpRyOxwUZK3ZjKKXULzs4WfXqePenNGOjF_X2cfTt__3X9Mb_89OFifXqZtxLqmDd9yWVbNA12EhtTAjcdR6hqMECdIWUqrmosVF-jqiSaTpaYCN60ICQ34jh7s-hee_d9ohD1bggtjaOx5KagsRIFKl5D-X9UIQouOM7o6z_QKzd5mxZJVFGVWCuOD9TGjKQH27uYXnQW1acKaylLURaJOvkLlU5H6RucpX5I9YOBtwcDiYn0M27MFIK--PL5kMWFbb0LwVOvr_2wM_5Gc9Czh_TiIQ1zzB7SIg29ut9uanbU_R75ZZoEiAUIqWU35B_W_4fsHZ2Izi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748629712</pqid></control><display><type>article</type><title>Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Wei ; Danilova, Tatiana ; Zhang, Mingyi ; Ren, Shuangfeng ; Zhu, Xianwen ; Zhang, Qijun ; Zhong, Shaobin ; Dykes, Linda ; Fiedler, Jason ; Xu, Steven ; Frels, Katherine ; Wegulo, Stephen ; Boehm, Jeffrey ; Cai, Xiwen</creator><creatorcontrib>Zhang, Wei ; Danilova, Tatiana ; Zhang, Mingyi ; Ren, Shuangfeng ; Zhu, Xianwen ; Zhang, Qijun ; Zhong, Shaobin ; Dykes, Linda ; Fiedler, Jason ; Xu, Steven ; Frels, Katherine ; Wegulo, Stephen ; Boehm, Jeffrey ; Cai, Xiwen</creatorcontrib><description>Key message We identified and integrated the novel FHB-resistant Fhb7 The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived ( Thinopyrum elongatum , genome EE) Fhb7 allele, designated Fhb7 The2 , was identified and integrated into the wheat B genome through a small 7B–7E translocation (7BS·7BL–7EL) involving the terminal regions of the long arms. Fhb7 The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7 The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7 The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum -derived Fhb7 allele Fhb7 Thp . This will further improve the utility of Fhb7 The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7 The2 , Fhb7 Thp , and another Th. elongatum -derived Fhb7 allele Fhb7 The1 , which led to seven amino acid conversions in Fhb7 The2 , Fhb7 Thp , and Fhb7 The1 , respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7 The2 . The 7EL segment containing Fhb7 The2 in the translocation chromosome 7BS·7BL–7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7 The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.</description><identifier>ISSN: 0040-5752</identifier><identifier>ISSN: 1432-2242</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04228-3</identifier><identifier>PMID: 36201026</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alleles ; Allelomorphism ; Amino acids ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome 7 ; chromosomes ; Control ; Cytogenetics ; Disease resistance ; Disease Resistance - genetics ; Diseases and pests ; durum wheat ; Fungal diseases of plants ; Fusarium ; Fusarium head blight ; Genetic aspects ; Genetic research ; Genomes ; Genomics ; Germplasm ; Glutathione ; Glutathione transferase ; Heredity ; Identification and classification ; introgression ; Life Sciences ; Marker-assisted selection ; Methods ; Nucleotide sequence ; Original Article ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Genetics and Genomics ; Plant immunology ; Poaceae - genetics ; Production processes ; resistance genes ; Sequence analysis ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Structure ; Thinopyrum elongatum ; Thinopyrum ponticum ; Triticum - genetics ; Triticum durum ; Wheat ; Wheatgrasses</subject><ispartof>Theoretical and applied genetics, 2022-12, Vol.135 (12), p.4409-4419</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</rights><rights>2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-bf615c4bb2d52ba601ad120890a0edae7a8179247f927852ad562d121bc0351a3</citedby><cites>FETCH-LOGICAL-c509t-bf615c4bb2d52ba601ad120890a0edae7a8179247f927852ad562d121bc0351a3</cites><orcidid>0000-0002-3937-1074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04228-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04228-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36201026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Danilova, Tatiana</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Ren, Shuangfeng</creatorcontrib><creatorcontrib>Zhu, Xianwen</creatorcontrib><creatorcontrib>Zhang, Qijun</creatorcontrib><creatorcontrib>Zhong, Shaobin</creatorcontrib><creatorcontrib>Dykes, Linda</creatorcontrib><creatorcontrib>Fiedler, Jason</creatorcontrib><creatorcontrib>Xu, Steven</creatorcontrib><creatorcontrib>Frels, Katherine</creatorcontrib><creatorcontrib>Wegulo, Stephen</creatorcontrib><creatorcontrib>Boehm, Jeffrey</creatorcontrib><creatorcontrib>Cai, Xiwen</creatorcontrib><title>Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message We identified and integrated the novel FHB-resistant Fhb7 The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived ( Thinopyrum elongatum , genome EE) Fhb7 allele, designated Fhb7 The2 , was identified and integrated into the wheat B genome through a small 7B–7E translocation (7BS·7BL–7EL) involving the terminal regions of the long arms. Fhb7 The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7 The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7 The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum -derived Fhb7 allele Fhb7 Thp . This will further improve the utility of Fhb7 The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7 The2 , Fhb7 Thp , and another Th. elongatum -derived Fhb7 allele Fhb7 The1 , which led to seven amino acid conversions in Fhb7 The2 , Fhb7 Thp , and Fhb7 The1 , respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7 The2 . The 7EL segment containing Fhb7 The2 in the translocation chromosome 7BS·7BL–7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7 The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Allelomorphism</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome 7</subject><subject>chromosomes</subject><subject>Control</subject><subject>Cytogenetics</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>durum wheat</subject><subject>Fungal diseases of plants</subject><subject>Fusarium</subject><subject>Fusarium head blight</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germplasm</subject><subject>Glutathione</subject><subject>Glutathione transferase</subject><subject>Heredity</subject><subject>Identification and classification</subject><subject>introgression</subject><subject>Life Sciences</subject><subject>Marker-assisted selection</subject><subject>Methods</subject><subject>Nucleotide sequence</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunology</subject><subject>Poaceae - genetics</subject><subject>Production processes</subject><subject>resistance genes</subject><subject>Sequence analysis</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Structure</subject><subject>Thinopyrum elongatum</subject><subject>Thinopyrum ponticum</subject><subject>Triticum - genetics</subject><subject>Triticum durum</subject><subject>Wheat</subject><subject>Wheatgrasses</subject><issn>0040-5752</issn><issn>1432-2242</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1v1DAQhiMEokvhD3BAlrjAIWU8juPk2K4oVKqExMfZcpLJbqqsXWxnof31dZRCtQiBrJFHM8-80thvlr3kcMIB1LsAwBFzmKNArHLxKFvxQmCOWODjbAVQQC6VxKPsWQhXAIASxNPsSJQIHLBcZfv1TXQbshSHlhnbsZS7XcrbrfGmjeSHWxMHZ5nrmWHW7Wlk0Ywj-7ElEzfehJB3idpTx863jWKpRyOxwUZK3ZjKKXULzs4WfXqePenNGOjF_X2cfTt__3X9Mb_89OFifXqZtxLqmDd9yWVbNA12EhtTAjcdR6hqMECdIWUqrmosVF-jqiSaTpaYCN60ICQ34jh7s-hee_d9ohD1bggtjaOx5KagsRIFKl5D-X9UIQouOM7o6z_QKzd5mxZJVFGVWCuOD9TGjKQH27uYXnQW1acKaylLURaJOvkLlU5H6RucpX5I9YOBtwcDiYn0M27MFIK--PL5kMWFbb0LwVOvr_2wM_5Gc9Czh_TiIQ1zzB7SIg29ut9uanbU_R75ZZoEiAUIqWU35B_W_4fsHZ2Izi4</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Wei</creator><creator>Danilova, Tatiana</creator><creator>Zhang, Mingyi</creator><creator>Ren, Shuangfeng</creator><creator>Zhu, Xianwen</creator><creator>Zhang, Qijun</creator><creator>Zhong, Shaobin</creator><creator>Dykes, Linda</creator><creator>Fiedler, Jason</creator><creator>Xu, Steven</creator><creator>Frels, Katherine</creator><creator>Wegulo, Stephen</creator><creator>Boehm, Jeffrey</creator><creator>Cai, Xiwen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3937-1074</orcidid></search><sort><creationdate>20221201</creationdate><title>Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome</title><author>Zhang, Wei ; Danilova, Tatiana ; Zhang, Mingyi ; Ren, Shuangfeng ; Zhu, Xianwen ; Zhang, Qijun ; Zhong, Shaobin ; Dykes, Linda ; Fiedler, Jason ; Xu, Steven ; Frels, Katherine ; Wegulo, Stephen ; Boehm, Jeffrey ; Cai, Xiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-bf615c4bb2d52ba601ad120890a0edae7a8179247f927852ad562d121bc0351a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Allelomorphism</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome 7</topic><topic>chromosomes</topic><topic>Control</topic><topic>Cytogenetics</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>durum wheat</topic><topic>Fungal diseases of plants</topic><topic>Fusarium</topic><topic>Fusarium head blight</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germplasm</topic><topic>Glutathione</topic><topic>Glutathione transferase</topic><topic>Heredity</topic><topic>Identification and classification</topic><topic>introgression</topic><topic>Life Sciences</topic><topic>Marker-assisted selection</topic><topic>Methods</topic><topic>Nucleotide sequence</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunology</topic><topic>Poaceae - genetics</topic><topic>Production processes</topic><topic>resistance genes</topic><topic>Sequence analysis</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Structure</topic><topic>Thinopyrum elongatum</topic><topic>Thinopyrum ponticum</topic><topic>Triticum - genetics</topic><topic>Triticum durum</topic><topic>Wheat</topic><topic>Wheatgrasses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Danilova, Tatiana</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Ren, Shuangfeng</creatorcontrib><creatorcontrib>Zhu, Xianwen</creatorcontrib><creatorcontrib>Zhang, Qijun</creatorcontrib><creatorcontrib>Zhong, Shaobin</creatorcontrib><creatorcontrib>Dykes, Linda</creatorcontrib><creatorcontrib>Fiedler, Jason</creatorcontrib><creatorcontrib>Xu, Steven</creatorcontrib><creatorcontrib>Frels, Katherine</creatorcontrib><creatorcontrib>Wegulo, Stephen</creatorcontrib><creatorcontrib>Boehm, Jeffrey</creatorcontrib><creatorcontrib>Cai, Xiwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Danilova, Tatiana</au><au>Zhang, Mingyi</au><au>Ren, Shuangfeng</au><au>Zhu, Xianwen</au><au>Zhang, Qijun</au><au>Zhong, Shaobin</au><au>Dykes, Linda</au><au>Fiedler, Jason</au><au>Xu, Steven</au><au>Frels, Katherine</au><au>Wegulo, Stephen</au><au>Boehm, Jeffrey</au><au>Cai, Xiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>135</volume><issue>12</issue><spage>4409</spage><epage>4419</epage><pages>4409-4419</pages><issn>0040-5752</issn><issn>1432-2242</issn><eissn>1432-2242</eissn><abstract>Key message We identified and integrated the novel FHB-resistant Fhb7 The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived ( Thinopyrum elongatum , genome EE) Fhb7 allele, designated Fhb7 The2 , was identified and integrated into the wheat B genome through a small 7B–7E translocation (7BS·7BL–7EL) involving the terminal regions of the long arms. Fhb7 The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7 The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7 The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum -derived Fhb7 allele Fhb7 Thp . This will further improve the utility of Fhb7 The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7 The2 , Fhb7 Thp , and another Th. elongatum -derived Fhb7 allele Fhb7 The1 , which led to seven amino acid conversions in Fhb7 The2 , Fhb7 Thp , and Fhb7 The1 , respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7 The2 . The 7EL segment containing Fhb7 The2 in the translocation chromosome 7BS·7BL–7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7 The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36201026</pmid><doi>10.1007/s00122-022-04228-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3937-1074</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2022-12, Vol.135 (12), p.4409-4419
issn 0040-5752
1432-2242
1432-2242
language eng
recordid cdi_proquest_miscellaneous_2834271906
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Alleles
Allelomorphism
Amino acids
Biochemistry
Biomedical and Life Sciences
Biotechnology
Chromosome 7
chromosomes
Control
Cytogenetics
Disease resistance
Disease Resistance - genetics
Diseases and pests
durum wheat
Fungal diseases of plants
Fusarium
Fusarium head blight
Genetic aspects
Genetic research
Genomes
Genomics
Germplasm
Glutathione
Glutathione transferase
Heredity
Identification and classification
introgression
Life Sciences
Marker-assisted selection
Methods
Nucleotide sequence
Original Article
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Diseases - genetics
Plant Genetics and Genomics
Plant immunology
Poaceae - genetics
Production processes
resistance genes
Sequence analysis
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Structure
Thinopyrum elongatum
Thinopyrum ponticum
Triticum - genetics
Triticum durum
Wheat
Wheatgrasses
title Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytogenetic%20and%20genomic%20characterization%20of%20a%20novel%20tall%20wheatgrass-derived%20Fhb7%20allele%20integrated%20into%20wheat%20B%20genome&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Zhang,%20Wei&rft.date=2022-12-01&rft.volume=135&rft.issue=12&rft.spage=4409&rft.epage=4419&rft.pages=4409-4419&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04228-3&rft_dat=%3Cgale_proqu%3EA729556364%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748629712&rft_id=info:pmid/36201026&rft_galeid=A729556364&rfr_iscdi=true